DeepMindがニューラルネットワークと強化学習ライブラリをリリース、ネットユーザー:JAXの開発を促進

DeepMindがニューラルネットワークと強化学習ライブラリをリリース、ネットユーザー:JAXの開発を促進

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

DeepMind は本日、JAX をベースにした 2 つのライブラリ、Haiku と RLax をリリースしました。

JAX は Google によって提案され、TensorFlow 用の簡略化されたライブラリです。これは、線形代数用のコンパイラである XLA と、ネイティブ Python コードと Numpy コードを自動的に区別するライブラリである Autograd を組み合わせて、高性能機械学習の研究に使用します。

今回リリースされた 2 つのライブラリは、それぞれニューラル ネットワークと強化学習を対象としており、JAX の使用を大幅に簡素化します。

Haiku は JAX をベースにしたニューラル ネットワーク ライブラリであり、ユーザーは使い慣れたオブジェクト指向プログラミング モデルを使用し、JAX の純粋な関数変換に完全にアクセスできます。

RLax は、強化学習エージェントを実装するための便利なビルディング ブロックを提供する、JAX 上のライブラリです。

興味深いことに、Reddit ユーザーは Haiku ライブラリの名前が「ax」で終わらないことに驚きました。

もちろん、ネットユーザーの中には、この2つのライブラリを肯定する意見も出ている。

それがJAXを推進したことは間違いありません。

それでは、Haiku と RLex の本当の姿を見てみましょう。

俳句

Haiku は、JAX のニューラル ネットワーク ライブラリであり、ユーザーは使い慣れたオブジェクト指向プログラミング モデルを使用しながら、JAX の純粋に機能的な変換に完全にアクセスできます。

モジュール抽象化 hk.Module と単純な関数変換 hk.transform という 2 つのコア ツールを提供します。

hk.Module は、独自のパラメータ、他のモジュール、およびユーザー入力に関数を適用するためのメソッドへの参照を含む Python オブジェクトです。

hk.transform を使用すると、JAX の純粋に機能的な変換に完全にアクセスできます。

JAX には多くのニューラル ネットワーク ライブラリがありますが、Haiku の特別な点は何でしょうか?ポイントは5つあります。

1. HaikuはDeepMindの研究者によって大規模にテストされている

DeepMind は、Haiku と JAX で多くの実験を比較的簡単に再現しました。これらには、画像および言語処理、生成モデル、強化学習における大規模な結果が含まれます。

2. Haikuはライブラリであり、フレームワークではない

これは、モデル パラメータやその他のモデル状態の管理など、いくつかの特定の事項を簡素化するように設計されています。他のライブラリと組み合わせて記述でき、JAX の他の部分と連携して動作します。

3. Haikuは新しいスタートアップではない

これは、DeepMind のほぼ普遍的に採用されているニューラル ネットワーク ライブラリである Sonnet のプログラミング モデルと API に基づいて構築されています。 JAX 関数変換へのアクセスを維持しながら、状態管理のための Sonnet のモジュールベースのプログラミング モデルを保持します。

4. 俳句への移行は簡単

慎重な設計により、TensorFlow と Sonnet から JAX と Haiku への移行は比較的容易です。新しい関数 (hk.transform など) とは別に、Haiku は Sonnet 2 の API となる予定です。

5. Haiku は JAX を簡素化します

乱数を処理するためのシンプルなモデルを提供します。変換された関数では、hk.next_rng_key() は一意の rng キーを返します。

では、Haiku はどのようにインストールするのでしょうか?

Haiku は純粋な Python で書かれていますが、JAX を介して C++ コードに依存しています。

まず、以下のリンクの手順に従って、関連するアクセラレータ サポートを備えた JAX をインストールします。

https://github.com/google/jax#インストール

その後、インストールを完了するには、簡単な pip コマンドを 1 つだけ実行する必要があります。

  1. $ pip git+https: //github.com/deepmind/haikuをインストールします 

次に、ニューラル ネットワークと損失関数の例を示します。

  1. 俳句をhkとしてインポート
  2.  
  3. jax.numpyをjnpとしてインポートする
  4.  
  5. def softmax_cross_entropy(ロジット、ラベル):
  6.  
  7. one_hot = hk.one_hot(ラベル、logits.shape[- 1 ])
  8.  
  9. -jnp.sum(jax.nn.log_softmax(logits) * one_hot、axis=- 1 )を返します
  10.  
  11. def loss_fn(画像、ラベル):
  12.  
  13. モデル = hk.Sequential([
  14.  
  15. hk.Linear( 1000 )、
  16.  
  17. jax.nn.relu、
  18.  
  19. hk.Linear( 100 )、
  20.  
  21. jax.nn.relu、
  22.  
  23. hk.Linear( 10 )、
  24.  
  25. ])
  26.  
  27. logits = モデル(画像)
  28.  
  29. jnp.mean(softmax_cross_entropy(logits, labels))を返します
  30.  
  31. loss_obj = hk.transform(loss_fn)

RLax

RLax は、強化学習エージェントを実装するための便利なビルディング ブロックを提供する、JAX 上のライブラリです。

提供される操作と関数は完全なアルゴリズムではなく、強化学習のための特定の数学的操作の実装です。

RLax のインストールも非常に簡単で、pip コマンドで実行できます。

  1. pip で git+git をインストールします: //github.com/deepmind/rlax.git  

JAX jax.jit 関数を使用すると、すべての RLax コードを異なるハードウェア上でコンパイルできます。

RLax に関して注意する必要があるのは、その命名規則です。

多くの関数は、出力を計算するために、連続する時間ステップにわたるポリシー、アクション、報酬、および値を考慮します。この場合、接尾辞 _t と tm1 は通常、各入力がどのステップで生成されたかを示すために使用されます。次に例を示します。

q_tm1: 遷移のソース状態における操作の値。

a_tm1: ソース状態で選択された操作。

r_t: 目標状態で収集された結果の報酬。

q_t: ターゲット状態における操作値。

Haiku と RLax は両方とも GitHub でオープンソース化されています。興味のある読者は「ポータル」のリンクからアクセスできます。

ポータル

俳句:

https://github.com/deepmind/haiku

RLax:

https://github.com/deepmind/rlax

<<:  予想外だが妥当: ガートナーの 2020 年データ サイエンスおよび機械学習プラットフォームのマジック クアドラントの解釈

>>:  Googleは社内でAIを使ったコンピュータチップの開発を試みていることを明らかに

ブログ    
ブログ    

推薦する

...

マイクロソフトがローブを買収:一般の人々が人工知能を簡単に利用できるように

マイクロソフトは、人工知能はテクノロジー大手が反体制派を排除するための武器として利用されるべきではな...

人工知能とクラウドコンピューティングの組み合わせは、企業ビジネスの飛躍的成長をどのように促進するのでしょうか?

Statistaの最近のレポートによると、「AI市場の世界的価値は2025年までに年間890億ドル...

汎用人工知能は可能か?

人工知能という用語が最初に使われたのは、より正確には「狭義の AI」と呼ぶべきものでした。これは強力...

...

飛行、地中への潜水、海への潜水も可能な多機能ソフトロボット

2月10日のニュース(劉亜珠)最近、科学者たちは変形して運転、飛行、水泳ができる新しい「ソフト」ロボ...

チューリング賞受賞者ジョン・ヘネシー氏:データと機械学習は世界をより良い場所にする

5月26日、チューリング賞受賞者で米国工学アカデミー会員のジョン・ヘネシー氏が、2021年中国国際ビ...

人工知能技術がハリウッドスターを「若返らせる」

現代の若者は、ベテランスターたちの若い頃の見事な姿を見る機会がもうないが、それは問題ではない。人工知...

データから診断へ: 緑内障検出のためのディープラーニング手法

緑内障は、世界中の無数の人々に回復不可能な失​​明を引き起こす障害の主な原因です。緑内障自体は、眼と...

より優れた LLM ベースのアプリケーションを構築するための 4 つの秘訣

アドリアン・トゥルイユ翻訳者 | ブガッティ校正 | Chonglou制作:51CTO テクノロジー...

Facebook の 10,000 ワードの記事: すべての AI モデルが PyTorch フレームワークに移行

PyTorch は 2017 年のリリース以来、GitHub の人気リストで急速にトップに立ち、一時...

...

5Gの商用化は加速し続け、自動運転との統合における価値が強調される

私の国が2019年に5Gを正式に開始してから2年以上が経ちました。 2021年に入り、わが国の5G開...

...

機械学習の問題を解決する一般的な方法があります!これを読んでください

編集者注: この記事は、WeChat パブリック アカウント「Big Data Digest」(ID...