AI に役立つ 7 つのオープンソース ツール

AI に役立つ 7 つのオープンソース ツール

[[282843]]

人工知能は未来の道を歩み続ける注目すべき技術です。この進化する時代において、それはあらゆる多国籍組織の注目を集めています。 Google、IBM、Facebook、Amazon、Microsoft など、業界の有名企業は、この新時代のテクノロジーに継続的に投資しています。

ビジネスニーズを予測するには、AI を活用し、研究開発を新たなレベルに引き上げる必要があります。この高度なテクノロジーは、超インテリジェントなソリューションを提供する研究開発組織にとって不可欠な要素になりつつあります。精度を維持し、より良い結果で生産性を向上させるのに役立ちます。

AI オープンソース ツールとテクニックは、頻繁かつ正確な結果を出すことで、あらゆる業界の注目を集めています。これらのツールは、パフォーマンスを分析しながら、より大きな利益をもたらすのに役立ちます。

さっそく、人工知能をより深く理解するのに役立つ最高のオープンソース ツールをいくつか紹介します。

1. テンソルフロー

TensorFlow は、人工知能のためのオープンソースの機械学習フレームワークです。主に機械学習とディープラーニングの研究と制作を行うために開発されました。 TensorFlow を使用すると、開発者はネットワークまたはシステム ノードを通過するデータ フローのグラフを作成できます。グラフは、データの多次元配列またはテンソルを提供します。

TensorFlow は数え切れないほどの利点を持つ優れたツールです。

  • 数値計算を簡素化する
  • TensorFlow はさまざまなモデルにわたって柔軟性を提供します。
  • TensorFlowはビジネス効率を向上します
  • 持ち運びに便利
  • 自動差別化機能

2. Apache システムML

Apache SystemML は、IBM が作成した非常に人気のあるオープンソースの機械学習プラットフォームであり、ビッグデータを処理するための優れたプラットフォームを提供します。 Apache Spark 上で効率的に実行され、コードがディスク上で実行できるか、Apache Spark クラスター上で実行できるかを判断しながら、データを自動的にスケーリングします。それだけでなく、豊富な機能により業界の製品の中でも際立っています。

  • アルゴリズムのカスタマイズ
  • 複数の実行モード
  • 自動最適化

また、ディープラーニングもサポートしており、開発者は機械学習コードをより効率的に実装および最適化できます。

3. オープンNN

OpenNN は、プログレッシブ分析のためのオープンソースの人工知能ニューラル ネットワーク ライブラリです。 C++ と Python を使用して堅牢なモデルを開発するのに役立ち、予測や分類などの機械学習ソリューションを処理するためのアルゴリズムと手順も含まれています。また、回帰と相関もカバーし、業界に高いパフォーマンスと技術の進化をもたらします。

次のような豊富な機能があります:

  • デジタルアシスタンス
  • 予測分析
  • 高速パフォーマンス
  • バーチャルパーソナルアシスタンス
  • 音声認識
  • 高度な分析

高度なデータ マイニング ソリューションを設計および実装して、有益な結果を達成するのに役立ちます。

4. カフェ

Caffe (Convolutional Architecture for Fast Feature Embedding) は、オープンソースのディープラーニング フレームワークです。速度、モジュール性、表現を重視します。 Caffe はもともとカリフォルニア大学バークレー校の視覚学習センターによって開発され、Python インターフェースを使用して C++ で書かれています。 Linux、macOS、Windows でスムーズに動作します。

AI テクノロジーに貢献する Caffe の主要機能の一部。

  1. 表現構造
  2. 拡張可能なコード
  3. 大規模なコミュニティ
  4. 積極的な開発
  5. 高速パフォーマンス

刺激的な成長をもたらしながらイノベーションを促進するのに役立ちます。このツールを最大限に活用して、希望する結果を得てください。

5. トーチ

Torch は、さまざまな便利な機能を提供することで、シリアル化やオブジェクト指向プログラミングなどの複雑なタスクを簡素化するオープンソースの機械学習ライブラリです。機械学習プロジェクトにおいて最大限の柔軟性とスピードを提供します。 Torch はスクリプト言語 Lua で記述され、最下位レベルでは C で実装されています。さまざまな組織や研究室で使用されています。

Torch には次のような多くの利点があります。

  • 高速かつ効率的なGPUサポート
  • 線形代数サブルーチン
  • iOSおよびAndroidプラットフォームをサポート
  • 数値最適化サブルーチン
  • N次元配列

6. アコード.NET

Accord .NET は、有名な無料のオープンソース AI 開発ツールの 1 つです。 C# で記述されたオーディオおよび画像処理ライブラリを組み合わせるために使用できるライブラリ セットがあります。コンピューター ビジョンからコンピューター ヒアリング、信号処理、統計アプリケーションまで、商用利用に必要なあらゆるものを構築できます。さまざまなライブラリをすばやく実行するための包括的なサンプル アプリケーション セットが付属しています。

Accord .NET の次のような魅力的な機能を使用して、高度なアプリケーションを開発できます。

  • 統計分析
  • データアクセス
  • 適応型
  • ディープラーニング
  • 2次ニューラルネットワーク学習アルゴリズム
  • デジタル支援と多言語対応
  • 音声認識

7. サイキットラーン

Scikit-Learn は、AI 技術を支援する人気のオープン ソース ツールの 1 つです。これは Python での機械学習のための貴重なライブラリです。これには、分類、クラスタリング、回帰、次元削減などの機械学習と統計モデリングのための効率的なツールが含まれています。

Scikit-Learn の機能について詳しく見てみましょう。

  • クロス検証
  • クラスタリングと分類
  • 多様な学習
  • 機械学習
  • 仮想プロセス自動化
  • ワークフロー自動化

前処理からモデルの選択まで、Scikit-learn はすべての処理に役立ちます。データマイニングからデータ分析まで、すべてのタスクを簡素化します。

要約する

これらは、包括的な機能を提供する人気のあるオープンソース AI ツールの一部です。新しい時代のアプリケーションを開発する前に、これらのツールの 1 つを選択し、それに応じて作業を行う必要があります。これらのツールは高度な AI ソリューションを提供し、最新のトレンドに対応します。

人工知能は世界中で応用されており、あらゆるところに存在しています。 Amazon Alexa、Siriなどのアプリケーションにより、AIは顧客に優れたユーザーエクスペリエンスを提供します。ユーザーの注目を集める業界では大きな利点があります。医療、銀行、金融、電子商取引など、あらゆる業界で、AI は成長と生産性を高めながら、膨大な時間と労力を節約しています。

より優れたユーザー エクスペリエンスと驚くべき結果を得るには、これらのオープン ソース ツールのいずれかを選択してください。それは、品質と安全性の面で成長し、より良い結果を達成するのに役立ちます。

<<:  ファーウェイ、2019年グローバルコネクティビティインデックス(GCI)レポートを発表:インテリジェントコネクティビティが経済成長の新たな原動力に

>>:  AI に物語を伝える: シーンを想像するように教えるにはどうすればよいでしょうか?

ブログ    
ブログ    

推薦する

...

学問に戻りましょう!シュム氏は清華大学の非常勤教授として、コンピュータビジョンとグラフィックスの博士課程の学生を募集する。

[[317132]]出典:中国ビジネスニュースマイクロソフトの元副社長、ハリー・シャム博士が学界復...

私の国における人工知能の発展に対する最大の圧力は、基礎理論と独自のアルゴリズムです。

業界では、人工知能はこれまで2世代を経てきたと一般的に考えられています。第一世代の人工知能は知識主導...

人工知能研究における大きな進歩は人類に大きな変化をもたらすだろう

アメリカのテクノロジーの天才イーロン・マスク氏は、彼の研究チームが脳と機械の相互接続を可能にする脳・...

...

ヘルスケアにおける人工知能の応用

今年に入ってから、医療提供方法や患者がより積極的に医療に参加できる方法を変革するために AI を使用...

大規模モデルのスコアリングのためのベンチマークは信頼できるでしょうか? Anthropicは大きなレビューを出した

現段階では、人工知能 (AI) が社会に与える影響に関する議論のほとんどは、信頼性、公平性、悪用され...

業界丨2020年のインテリジェントウェーブを理解するには、BaiduとGoogleのAIの足跡から始める

2020年が過ぎました。順調で平和な生活を送ったか、非常に困難な生活を送ったかにかかわらず、私たちは...

データクローズドループ! DrivingGaussian: リアルなサラウンドビューデータ、運転シーンの再構成SOTA

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

インテリジェントな会話型ロボットは顧客サービス分野で成熟を続けている

会話型 AI ベンダーの Gnani は、会話型 AI ボットが今後 2 ~ 3 年で劇的に改善され...

297 件の論文すべてを 1 つの記事で読むことができます。中国科学院が「拡散モデルに基づく画像編集」に関する初のレビューの出版を主導

この記事では、画像編集の最先端の手法を包括的に研究し、技術的なルートに基づいて 3 つの主要なカテゴ...

人工知能の新時代が近づいています。従来の産業の従事者はどこへ向かうのでしょうか?

世間の好むと好まざるとにかかわらず、人工知能の新しい時代が静かに到来した。しかし、人工知能が本格的に...

KServe、Kubernetes環境に基づく高度にスケーラブルな機械学習デプロイメントツール

ChatGPT のリリースにより、機械学習技術の活用を避けることがますます難しくなってきています。メ...

...

Nature: 地域や文化を超えて、AIはすべての人間に共通する16の表情を認識する

人々の間には大きな違いがしばしばありますが、私たちの存在にはほぼすべての人に共通する要素が数多くあり...