Tensorflow コード実装によるディープ ニューラル ネットワークの解釈可能性手法の概要

Tensorflow コード実装によるディープ ニューラル ネットワークの解釈可能性手法の概要

ニューラル ネットワークの理解: ディープラーニングは長い間、解釈可能性が低いと考えられてきました。しかし、ニューラル ネットワークを理解するための研究は決して止まりません。この記事では、ニューラル ネットワークの解釈方法をいくつか紹介し、Jupyter で実行できるコード リンクを備えています。

活性化の最大化

活性化最大化を通じてディープ ニューラル ネットワークを解釈する方法は 2 つあります。

1.1 活性化最大化(AM)

関連するコードは次のとおりです。

http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/1.1%20Activation%20Maximization.ipynb

1.2 コード空間での AM の実行

関連するコードは次のとおりです。

http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/1.3%20Performing%20AM%20in%20Code%20Space.ipynb

レイヤーごとの関連性の伝播

レイヤーごとの相関伝播には 5 つの解釈可能な方法があります。感度分析、単純テイラー分解、レイヤーごとの関連性伝播、ディープテイラー分解、DeepLIFT。彼らのアプローチは、まず感度分析を通じて関連スコアの概念を導入し、単純なテイラー分解を使用して基本的な関連分解を調査し、次にさまざまな階層的関連伝播方法を確立することです。詳細は以下の通りです。

2.1 感度分析

関連するコードは次のとおりです。

http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/2.1%20Sensitivity%20Analysis.ipynb

2.2 単純テイラー分解

関連するコードは次のとおりです。

http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/2.2%20Simple%20Taylor%20Decomposition.ipynb

2.3 レイヤーごとの関連性の伝播

関連するコードは次のとおりです。

http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/2.3%20Layer-wise%20Relevance%20Propagation%20%281%29.ipynb

http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/2.3%20Layer-wise%20Relevance%20Propagation%20%282%29.ipynb

2.4 ディープテイラー分解

関連するコードは次のとおりです。

http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/2.4%20Deep%20Taylor%20Decomposition%20%281%29.ipynb

http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/2.4%20Deep%20Taylor%20Decomposition%20%282%29.ipynb

2.5 ディープリフト

関連するコードは次のとおりです。

http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/2.5%20DeepLIFT.ipynb

勾配ベースの方法

勾配ベースの方法には、デコンボリューション、バックプロパゲーション、ガイド付きバックプロパゲーション、積分勾配、平滑化勾配などがあります。詳細については、次のリンクを参照してください。

https://github.com/1202kbs/Understanding-NN/blob/master/models/grad.py

詳細は以下の通りです。

3.1 デコンボリューション

関連するコードは次のとおりです。

http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/3.1%20Deconvolution.ipynb

3.2 バックプロパゲーション

関連するコードは次のとおりです。

http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/3.2%20Backpropagation.ipynb

3.3 ガイド付きバックプロパゲーション

関連するコードは次のとおりです。

http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/3.3%20Guided%20Backpropagation.ipynb

3.4 積分勾配

関連するコードは次のとおりです。

http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/3.4%20Integrated%20Gradients.ipynb

3.5 スムーズグラッド

関連するコードは次のとおりです。

http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/3.5%20SmoothGrad.ipynb

クラスアクティベーションマップ

クラス アクティベーション マッピングには、クラス アクティベーション マップ、Grad-CAM、Grad-CAM++ の 3 つの方法があります。 MNIST のコードを参照できます:

https://github.com/deepmind/mnist-cluttered

各方法の詳細は以下の通りです。

4.1 クラスアクティベーションマップ

関連するコードは次のとおりです。

http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/4.1%20CAM.ipynb

4.2 グラッドCAM

関連するコードは次のとおりです。

http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/4.2%20Grad-CAM.ipynb

4.3 グラッドCAM++

関連するコードは次のとおりです。

http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/4.3%20Grad-CAM-PP.ipynb

説明の質を定量化する

それぞれの説明手法は、独自の直感的または数学的原理に基づいていますが、より抽象的なレベルで優れた説明の特徴を特定し、これらの特徴を定量的にテストできることも重要です。ここでは、品質と評価に基づいたさらに 2 つの解釈可能性の方法をお勧めします。詳細は以下の通りです。

5.1 説明の継続

関連するコードは次のとおりです。

http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/5.1%20Explanation%20Continuity.ipynb

5.2 説明の選択性

関連するコードは次のとおりです。

http://nbviewer.jupyter.org/github/1202kbs/Understanding-NN/blob/master/5.2%20Explanation%20Selectivity.ipynb

<<:  Google、ブラウザで動作するプログラミング不要のAIトレーニングツールをアップデート

>>:  データ変換率が低いと機械学習に深刻な影響を与える可能性がある

ブログ    

推薦する

Appleのアプリランキングアルゴリズム調整の裏側:ランキング管理企業が一夜にして沈黙

4月1日早朝のニュース:3月初旬から、AppleはAppランキングアルゴリズムを徐々に調整し、ランキ...

...

...

ロボットが医療に力を与える!しかし、医療ロボットがブレイクするまでには、まだ4歩の道のりがある。

今回の流行期間中、病院や最前線の防疫現場では、体温測定ロボット、消毒ロボット、検査ロボット、咽頭ぬぐ...

...

ディープラーニング入門 - TensorFlow を使ってモデルをトレーニングする方法を教えます

[[206688]]導入Tensorflow はバージョン 1.0 へのアップデート後に多くの新機能...

...

AIがメディア業界を変革、フェニックスTVがAIデータトラックに参入

メディア専門家は、2023年の「失業」について多かれ少なかれ不安を抱いています。メディア専門家は、C...

「ビッグアイクリップ」が生まれ変わり、ChatGPTチャットボットに変身

6 月 29 日のニュースによると、かつては物議を醸し、今では懐かしく思われている Microsof...

スマート病院: 将来の医療技術のガイドラインとトレンド

スマート病院とは何ですか?最も伝統的な病院でさえ、人、プロセス、資産の広大なネットワークを持つ複雑な...

テーラーメイド:ChatGPTカスタム指示がAIパーソナライゼーション革命をリード

1. 概要カスタム指示「カスタム指示」は ChatGPT の新機能です。カスタム指示を使用すると、自...

ディープラーニングアーキテクチャにおける予測コーディングモデルに関しては、PredNetに目を向ける必要があります。

[[434722]] 0. はじめに予測的コーディングは認知科学における仮説です。高レベルの神経活...

日常生活におけるAIの応用

機械学習やその他の技術をバックグラウンドで使用することで、AI は私たちの日常生活に多くの素晴らしい...