AIoTは単なる発言ではない

AIoTは単なる発言ではない

みなさんこんにちは。今日はAIoTについてお話します。

AIoT、つまり AI + IoT は、人工知能技術とモノのインターネットを実際のアプリケーションに統合することを指します。

そこで質問なのですが、AI と IoT はどちらも数年前から存在し、誰もがよく知っているものですが、AI + IoT の具体的な新しい分野とは何でしょうか?

AIoTという用語は、2017年からソーシャルメディアで頻繁に使用されています。業界の流行語として、AIoTはモノのインターネットの発展における避けられないトレンドであり、主要な伝統的な産業がインテリジェントテクノロジーにアップグレードするための最良のチャネルでもあります。

[[253583]]

AIoT 市場はどれくらい大きいのでしょうか?

スマートホーム市場だけを見ると、中国のスマートホームの規模は2018年に1,800億元に達し、2020年までに3,576億元に達するとデータで示されています。

AIの台頭とIoT技術の発展により、人間とコンピュータのインタラクション需要市場が爆発的に拡大しました。モデルの時代から PC インターネットの時代、モバイル インターネットの時代、モノのインターネットの時代まで、30 年間のデジタル化は、人間がもはや機械に「依存」するのではなく、機械がますます人間に「適応」していることを段階的に証明してきました。

データは AI に活力を与え、AI は IoT の可能性を生み出します。

エッジコンピューティングでサポートされる AIoT AIoT を実現するには、エッジコンピューティング機能のサポートが必要です。エッジ コンピューティングとは、アジャイル接続、リアルタイム ビジネス、データ最適化、アプリケーション インテリジェンスといった業界のデジタル化の主要なニーズを満たすために、オブジェクトまたはデータ ソースに近いネットワークのエッジでエッジ インテリジェント サービスを提供することです。

デバイス側には認識、推論、意思決定の機能があり、これらはクラウド内の独立したコンピューティング機能に依存することになります。スマートホームを例にとると、シナリオの特化によってエッジコンピューティング機能が向上します。

AI チップの要件: IoT シナリオに基づいて、AI コンピューティング能力とクロスデバイス形式の要件を満たすには、カスタマイズされたチップ アーキテクチャを設計する必要があります。

ローカル認識:高頻度語とネットワーク化率がこの部分の重要なポイントです。高頻度語はローカルで処理され、ネットワーク化せずに AI を最大限に活用できます。エッジ コンピューティングは、スマート ホーム分野での人間とコンピューターの相互作用のローカル認識を実現できます。

遠距離ノイズ低減、ウェイクアップ、ローカル/クラウド効率バランス、マルチモダリティに対する需要もあります。

[[253584]]

大手企業がAIoTで競争

ブルーオーシャンに誘われて、さまざまな分野の大手企業がAIoTに参入しています。

1. テクノロジーの巨人

Apple、Google、Amazonなどのテクノロジー大手が、準備の先頭に立ってきた。

  • Baidu は、人工知能、ビッグデータ、クラウド コンピューティング、モバイル サービス、セキュリティなどの分野での強みを活かし、ワンストップで完全に管理された IoT クラウド プラットフォームである Baidu Tiangong を構築しています。
  • アリババは第5の企業戦略を決定し、IoT、AI、クラウドコンピューティングが連携して進む新たな道を開き、モノのインターネットに本格的に参入します。
  • ......

2. 電子商取引プラットフォーム

JD.comは新しいブランド「Jingyuzuo」を立ち上げ、「基盤技術+サービスプラットフォーム+ランディングチャネル」を基盤としたスマートIoTシステムを構築し、技術サポート、IoTとクラウドの統合、シーンの連携、サービスの付加価値などの要素を通じて、さまざまなスマートライフサービスシーンを強化し続けています。

3. 伝統的な家電メーカー

ハイアールや美的などの伝統的な家電メーカーは、AIoT分野でシェアを獲得するために「完全にオープンで、完全に互換性のある」プラットフォームを構築しています。テクノロジーの巨人と比べると、テクノロジーの面で競争することは不可能であり、電子商取引プラットフォームと競争する場合、オープン性の面で競争することはできません。変化を起こさなければ、市場のペースに追いつくことができません。AIoT で成果を上げたいのであれば、新たな機会に挑戦する必要があります。

もちろん、Xiaomiのようなインターネット新興企業の台頭もあり、市場構造は基本的に形成されつつあります。

AIoT は競争の激しい分野ですが、勝者は誰になるでしょうか?

<<:  AIテスト:自動運転車のテストに関するケーススタディ

>>:  パスワードを忘れたことが引き起こすアルゴリズム思考

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

...

...

...

ビジネスリーダーが AI を活用して人々の心をつかみ、成果を上げる 5 つの方法

AI がリーダーシップ能力を強化できるとしたらどうでしょうか? チームをより深く理解し、チームのニー...

Xing Bo 氏のチームの LLM360 は、大規模なモデルを真に透明化する総合的なオープンソース プロジェクトです。

オープンソース モデルは、数だけでなくパフォーマンスも増加しており、活発な活力を示しています。チュー...

データセキュリティリスクのため、米国宇宙軍はChatGPTなどの人工知能ツールの使用を一時停止

ロイターが確認したメモによると、10月12日、米宇宙軍はデータセキュリティに関する懸念から、職員によ...

中国の人工知能特許ランキングで、百度、テンセント、マイクロソフト、インスパーが上位4社にランクイン

12月2日、国家工業情報セキュリティ発展研究センターは「中国人工知能特許技術分析報告書」を発表し、百...

開発速度が20倍にアップしました! GPT Pilot スター プロジェクトが Github のホット リストに掲載され、AI をゼロから構築

新たなスタープロジェクトが誕生! AI 開発者コンパニオンである GPT Pilot を使用すると、...

Java プログラミング スキル - データ構造とアルゴリズム「分割統治アルゴリズム」

[[398991]]アルゴリズムの紹介分割統治アルゴリズムは非常に重要です。文字通りの説明は「分割...

図解機械学習: 誰でも理解できるアルゴリズムの原理

機械学習の話題は誰もが話題にするほど普及していますが、それを完全に理解している人はほとんどいません。...

Apple Carに関する8つの技術的推測

著名な情報機関IHS Markitは最近、Appleの自動車プロジェクトに関する簡潔かつ説得力のある...

看護ロボットは医療従事者の仕事に完全に取って代わることができるのでしょうか?

研究によると、共感と前向きな指導は、医師が患者の痛みを和らげ、術後の回復を早め、精神科薬の使用を減ら...

45年前のマイクロソフトの予測が現実になりました!シャム:将来、AIの数は人類の人口を上回るだろう

本日開催された第8世代XiaoIce発表会で、XiaoIce会長で元マイクロソフトのグローバルエグゼ...

...

AIと機械学習の詐欺を見抜くための7つの原則

この記事は、公開アカウント「Reading the Core」(ID: AI_Discovery)か...