ジェネレーティブAIがインテリジェントオートメーションを推進する方法

ジェネレーティブAIがインテリジェントオートメーションを推進する方法

1997 年、世界は現チェスチャンピオンのガルリ・カスパロフと IBM の Deep Blue AI との画期的な対決を目撃しました。ディープ・ブルーの画期的な勝利はパラダイムシフトをもたらし、人工知能が単なる科学的な好奇心ではなく、人間の知能に挑戦できる力であることを証明した。時代は進み、現在では音声クエリに応答するデジタルアシスタントから予測分析ソフトウェアによって制御される自動化された工場まで、AI は日常生活のあらゆる側面にシームレスに統合されています。

かつては機械の認知に対してためらいがあったが、今では人工知能を組み込まれた現状として無関心に受け入れるようになった。しかし、この段階的な同化プロセスの中で、AI の革命的なサブセットである生成 AI モデルが登場しました。新しいオリジナルコンテンツを生成できるこれらのモデルは、機械の創造性の限界を根本的に拡大し、人間の創造性を高める刺激的な可能性を提供します。

ルールとロジックに依存する従来の AI とは異なり、生成 AI は膨大なデータセットからパターンを動的に学習します。人間のようなテキスト、画像、音声、コードなどを生成できるため、さまざまな分野で革新的なアプリケーションへの道が開かれます。この技術は最近、インテリジェント オートメーション (IA) の分野で中心的な位置を占めており、企業の業務効率を大幅に向上させると期待されています。

インテリジェント オートメーションには、ロボティック プロセス オートメーション (RPA)、インテリジェント ドキュメント処理 (IDP)、会話型 AI などのテクノロジが含まれ、反復的なタスクを自動化して人間の作業員の負担を軽減することを目的としています。主要なエンタープライズ自動化プラットフォームでは、すでに生成 AI を統合して製品を強化し、より優れたボット トレーニングを可能にする合成データセットを提供し、人間のような会話体験を生み出しています。

生成 AI の登場により、前例のない進歩がもたらされ、新しい方法でインテリジェントな自動化が強化されました。生成モデルは、現実世界のデータサンプルを正確にシミュレートすることで、ドキュメント処理ロボットのトレーニングを改善できます。コールセンターの会話を自動的に書き起こし、アクションの主要な要約を作成し、顧客の問い合わせを文脈に応じて解釈して自然な会話を実現します。さらに、生成 AI はマーケティング コンテンツやパーソナライズされたメッセージを迅速に作成するのに役立ち、多くの時間とリソースを節約します。

Microsoft や AWS などのクラウド インフラストラクチャのリーダーは、ビルド プロセスの自動化を民主化しました。これらのプラットフォームが提供するローコード/ノーコード ソリューションにより、あらゆる規模の企業が RPA や生成 AI などのテクノロジーの指数関数的な影響を活用できるようになります。事前に構築されたコネクタは、何百ものビジネス アプリケーションとシームレスに統合され、直感的なインターフェイスにより、一般開発者の開発プロセスが簡素化されます。柔軟な価格モデルによりオンデマンドのスケーリングが可能になり、チームは高額なコストをかけずに実験や革新を行うことができます。

生成 AI は、自動化のルネッサンスを告げる新たな領域を示し、単なるコスト削減を超えて技術変革の中核となる柱を拡大します。最先端の生成モデルをエンタープライズ自動化システムに統合すると、回復力、規模、コスト、生産性が飛躍的に向上します。生成 AI を活用した主要な自動化プラットフォームの実際の例により、その変革の可能性が強調されるとともに、進化する業界標準と規制の概要により、責任ある導入が保証されます。

生成 AI 供給エコシステムと将来の見通しは、企業の効率性を再定義するこのテクノロジーの大きな可能性を浮き彫りにしています。生成 AI と IA が共生的に進化し続けるにつれて、AI によって加速されるインテリジェント オートメーションは、これまでにない価値、創造性、意味を解き放ち、部門横断的なチームの生産性を向上させることが期待されます。生成 AI の民主化により、分散型イノベーションが加速され、この変革的なテクノロジーの可能性がテクノロジー業界のあらゆる場所で実現されることが保証されます。

<<:  スマート農業におけるモノのインターネットの応用

>>:  Google は Gen-2 を殴り、ピカを蹴り、大規模な AI ビデオ モデルを開発するために 7 か月間懸命に取り組みました。時空構造の最初の言及、持続時間は壮大なレベルにまで延長される

ブログ    

推薦する

マイクロソフトは、Bingチャットのベテラン向けにエキスパートモードの導入を検討中:より複雑なUIとより豊富な機能

7月26日、マイクロソフト広告およびウェブサービスのCEOであるミハイル・パラキン氏は、ネットユーザ...

AIとビッグデータでカスタマージャーニーを変革する方法

企業は AI とビッグデータを活用して、顧客体験をより良いものに変革することができます。人々はこれを...

TensorFlow の最大の機械学習データセット 30 件

導入画像、ビデオ、オーディオ、テキストが含まれており、非常に包括的です。機械学習のための最大のTen...

...

画像内のテキストを心配する必要はありません。TextDiffuserは高品質のテキストレンダリングを提供します。

近年、テキストから画像への変換の分野は、特に AIGC (人工知能生成コンテンツ) の時代において大...

GPT時代の学習アルゴリズム、線形モデルを実装するPytorchフレームワーク

今日は線形回帰モデルの実装を続けます。ただし、今回はすべての関数を自分で実装するのではなく、Pyto...

Programiz: 多くの人がChatGPTを使ってプログラミングを学んでおり、Web開発分野はAIの影響を最も受けやすい

プログラマー育成ウェブサイトProgramizは10月18日、ChatGPTがプログラミング教育分野...

MITの中国人博士課程学生がChatGPTをJupyterに移行し、自然言語プログラミングをワンストップソリューションに

自然言語プログラミングは Jupyter で直接実行できます。 MIT の中国人博士課程の学生によっ...

警察ドローンの数十億ドル規模のブルーオーシャンをどう実現するか?今後はこの3点に注目してください!

近年、飛行制御、ナビゲーション、通信などの技術の継続的な発展に伴い、ドローン産業は急速な成長を遂げて...

農業における人工知能の応用

農業は人類の生存の基盤であり、第三次産業の中核的位置を占め、経済社会の安定と発展に極めて重要な産業で...

AIは、DevOps開発者が新世代のランサムウェアに対抗するために不可欠である

Android オペレーティング システムを含むすべての主要なオペレーティング システムにおいて、人...

物体検出のための深層畳み込みニューラルネットワークの進歩

近年、深層畳み込みニューラル ネットワーク (DCNN) により、画像の分類と認識が大幅に向上しまし...

ライブ放送室で見る高解像度1080Pは720Pほど良くないかもしれない

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...