マイクロソフトがML.NETクロスプラットフォーム機械学習フレームワークをオープンソース化し、AIをさらに一歩前進させる

マイクロソフトがML.NETクロスプラットフォーム機械学習フレームワークをオープンソース化し、AIをさらに一歩前進させる

現地時間5月7日、米国シアトルでMicrosoft Buildカンファレンスが開催され、マイクロソフトは開発者向けの一連の新製品を発表しました。 Microsoft は、この製品シリーズのリリースと同時に、オープンソースの機械学習フレームワークである ML.NET も発表しました。 ML.NET を使用すると、開発者は機械学習モデルの開発や調整に関する専門知識を持たなくても、既存のモデルを直接使い始めることができます。

ML.NET は、.NET 開発者が機械学習モデルの開発や調整の専門知識を必要とせずに、独自のモデルを開発し、カスタマイズされた機械学習機能をアプリケーションに組み込むことができるクロスプラットフォーム フレームワークです。

ML.NET は Microsoft Research によって開発され、過去 10 年間で重要なフレームワークに成長しました。Windows、Bing、Azure など、Microsoft の多くの製品チームで使用されています。

このプレビュー リリースでは、ML.NET は分類 (テキスト分類、感情分析など)、回帰 (予測、価格推定など) などの機械学習タスクをサポートします。

Microsoft は、上記のタスクのサポートを発表するとともに、モデルのトレーニングと予測を行うための .NET API のドラフトや、学習アルゴリズム、変換、コア機械学習データ構造などのこのフレームワークのコア コンポーネントもリリースしました。

ML.NET はフレームワークであるため、TensorFlow、Accord.NET、CNTK などの一般的な機械学習ライブラリを追加するように拡張できることに注意してください。 ML.NET オープンソース エコシステムでは、Microsoft は内部機能のさらなる充実に取り組んでおり、ML.NET は .NET 開発者により最適化された機械学習開発エクスペリエンスをもたらすことができます。

ML.NET オープンソース コミュニティに参加することで、このツールを将来さらに迅速に開発できるようになります。 GitHub アドレスは次のとおりです。

https://github.com/dotnet/machinelearning

ML.NET は進化を続け、TensorFlow、Caffe2、CNTK などの人気のディープ ラーニング ライブラリや、Accord.NET などの一般的なディープ ラーニング ライブラリのサポートを継続的に追加し、その機能は推奨システム、異常検出、その他のディープ ラーニング手法などの他の機械学習シナリオに拡張できます。

ML.NET では、Azure Machine Learning と Cognitive Service の既存のエクスペリエンスも追加され、コードファースト アプローチが可能になり、ローカル アプリケーションの展開がサポートされ、ユーザーが独自のモデルを構築できるようになります。

ML.NET に関する詳細は以下をご覧ください。

ML.NET コア コンポーネント

ML.NET は .NET Foundation の一部としてリリースされ、リポジトリには、モデルのトレーニングと使用のための .NET C# API、さまざまな変換、回帰や分類などの多くの一般的な機械学習タスクが含まれています。

ML.NET の目標は、前処理、特徴エンジニアリング、モデリング、評価、および操作を通じて、.NET アプリケーションにディープラーニング機能を追加する E2E ワークフローを提供することです。

次の表は、ML.NET 0.1 でリリースされたコンポーネントの完全なリストです。

Microsoft は、ML.NET の API をユニバーサルにして、CNTK、Accord.NET、TensorFlow などのフレームワークやその他のライブラリを共有 API を通じて使用できるようにすることを目標としていると述べています。

ML.NET をインストールして、既存のさまざまな機能を体験できるようになりました。詳細については、以下を参照してください。

マイクロソフト

GitHub

<<:  AIをベッド管理に適用し、追跡予測により患者にベッドの空きを確保

>>:  機械分野では人材不足が起きているのでしょうか?人工知能の時代はあなたが思っているよりもずっと早く来ています!

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

受注収益が7億人民元を超えるPercentが、なぜこれほど爆発的な成長を遂げることができたのでしょうか?

2009年に設立されたPercentage Pointは、間違いなく中国のビッグデータ産業の発展の...

音声認識が検索ボックスに取って代わり、人工知能が3つの主要な応用分野で主導権を握る

マイクロソフトのレドモンド研究所の副社長であるデュメイス氏は、ディープラーニング技術が2017年にオ...

ザッカーバーグの45分間の詳細なインタビュー:今後10年間のVRと脳コンピューターインターフェースへの野望を明らかにする

[[386531]]誰もそこに頭を突っ込みたくないよ!ザッカーバーグ氏は脳コンピューターインターフェ...

GPT時代の学習アルゴリズム、線形モデルを実装するPytorchフレームワーク

今日は線形回帰モデルの実装を続けます。ただし、今回はすべての関数を自分で実装するのではなく、Pyto...

小度が「画期的な」新製品を百度世界2020で初公開、CCTVと提携してスマートライフの全貌を披露

「小都小都」、「私はここにいます」 - 数百万の家族と小都の間の日常会話のシーンがCCTVニュースス...

...

ジェネレーティブ AI が画像検索をどのように再定義するか

翻訳者 | 李睿レビュー | Chonglou生成 AI は、ユニークなテキスト、サウンド、画像を作...

2018 年後半のディープラーニング プロジェクトをお見逃しなく!

[[252582]]ビッグデータダイジェスト制作翻訳者:fuma、Ni Ni、Jiang Baos...

自動車技術が新たな時代を切り開きます!メルセデス・ベンツ、BMW、Google、Amazon、Qualcommの次世代レイアウト!

編纂者:ヤン・ジェン制作:51CTO テクノロジースタック(WeChat ID:blog)次世代のス...

テキストの説明に基づいてビデオから画像を切り取る、Transformer:このクロスモーダルタスクは私が最も得意とすることです

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

海外メディア:人間はますます余暇を持ち、AIは資本主義を排除する

ベストセラー作家のバーナード・マー氏はフォーブス誌に「人工知能はいかにして資本主義を殺すか」と題する...

...

IoTとAIがコロナウイルスの流行中に企業の事業再開をどのように可能にしているか

[[333668]]数か月に及ぶ極度の不確実性、経済の閉鎖、孤立の後、ようやくゆっくりと経済が機能し...

TensorFlow で発見された脆弱性の背後にあるもの: AI セキュリティに関する私たちの愚かさと無知

AI がインターネット セキュリティに与える影響について議論してきたとき、AI 自体も安全ではないと...

無意味または有害なボットトラフィックは年間最大2億5000万ドルのコストがかかる

Cyber​​news によると、ますます多くの企業が、検出がますます困難になっている悪意のあるボッ...