マイクロソフトがML.NETクロスプラットフォーム機械学習フレームワークをオープンソース化し、AIをさらに一歩前進させる

マイクロソフトがML.NETクロスプラットフォーム機械学習フレームワークをオープンソース化し、AIをさらに一歩前進させる

現地時間5月7日、米国シアトルでMicrosoft Buildカンファレンスが開催され、マイクロソフトは開発者向けの一連の新製品を発表しました。 Microsoft は、この製品シリーズのリリースと同時に、オープンソースの機械学習フレームワークである ML.NET も発表しました。 ML.NET を使用すると、開発者は機械学習モデルの開発や調整に関する専門知識を持たなくても、既存のモデルを直接使い始めることができます。

ML.NET は、.NET 開発者が機械学習モデルの開発や調整の専門知識を必要とせずに、独自のモデルを開発し、カスタマイズされた機械学習機能をアプリケーションに組み込むことができるクロスプラットフォーム フレームワークです。

ML.NET は Microsoft Research によって開発され、過去 10 年間で重要なフレームワークに成長しました。Windows、Bing、Azure など、Microsoft の多くの製品チームで使用されています。

このプレビュー リリースでは、ML.NET は分類 (テキスト分類、感情分析など)、回帰 (予測、価格推定など) などの機械学習タスクをサポートします。

Microsoft は、上記のタスクのサポートを発表するとともに、モデルのトレーニングと予測を行うための .NET API のドラフトや、学習アルゴリズム、変換、コア機械学習データ構造などのこのフレームワークのコア コンポーネントもリリースしました。

ML.NET はフレームワークであるため、TensorFlow、Accord.NET、CNTK などの一般的な機械学習ライブラリを追加するように拡張できることに注意してください。 ML.NET オープンソース エコシステムでは、Microsoft は内部機能のさらなる充実に取り組んでおり、ML.NET は .NET 開発者により最適化された機械学習開発エクスペリエンスをもたらすことができます。

ML.NET オープンソース コミュニティに参加することで、このツールを将来さらに迅速に開発できるようになります。 GitHub アドレスは次のとおりです。

https://github.com/dotnet/machinelearning

ML.NET は進化を続け、TensorFlow、Caffe2、CNTK などの人気のディープ ラーニング ライブラリや、Accord.NET などの一般的なディープ ラーニング ライブラリのサポートを継続的に追加し、その機能は推奨システム、異常検出、その他のディープ ラーニング手法などの他の機械学習シナリオに拡張できます。

ML.NET では、Azure Machine Learning と Cognitive Service の既存のエクスペリエンスも追加され、コードファースト アプローチが可能になり、ローカル アプリケーションの展開がサポートされ、ユーザーが独自のモデルを構築できるようになります。

ML.NET に関する詳細は以下をご覧ください。

ML.NET コア コンポーネント

ML.NET は .NET Foundation の一部としてリリースされ、リポジトリには、モデルのトレーニングと使用のための .NET C# API、さまざまな変換、回帰や分類などの多くの一般的な機械学習タスクが含まれています。

ML.NET の目標は、前処理、特徴エンジニアリング、モデリング、評価、および操作を通じて、.NET アプリケーションにディープラーニング機能を追加する E2E ワークフローを提供することです。

次の表は、ML.NET 0.1 でリリースされたコンポーネントの完全なリストです。

Microsoft は、ML.NET の API をユニバーサルにして、CNTK、Accord.NET、TensorFlow などのフレームワークやその他のライブラリを共有 API を通じて使用できるようにすることを目標としていると述べています。

ML.NET をインストールして、既存のさまざまな機能を体験できるようになりました。詳細については、以下を参照してください。

マイクロソフト

GitHub

<<:  AIをベッド管理に適用し、追跡予測により患者にベッドの空きを確保

>>:  機械分野では人材不足が起きているのでしょうか?人工知能の時代はあなたが思っているよりもずっと早く来ています!

推薦する

...

新たな AI の冬を回避するにはどうすればよいでしょうか?

人工知能はここ数年で大きな進歩を遂げてきましたが、開発者の過剰な約束とエンドユーザーの非現実的な期待...

中国のAI研究は米国を上回る?専門家:例えば、ディープラーニングに関する論文の発表数

現在、世界の人工知能分野には、業界で「神のような存在」とみなされるトップの専門家が3人いる。そのうち...

NeurIPS 2023 レビュー: ビッグモデルが最も注目されており、清華大学 ToT 思考ツリーがリストに載る

最近、米国のトップ 10 テクノロジー ブログの 1 つである Latent Space が、終了し...

高速ドローンは森の中を自律的に飛行し、旅の間中独自のルートを計画し、最高時速40キロメートルで飛行する。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

ドローン配送の価値は強調されていますが、完全に普及するには何が欠けているのでしょうか?

現在、飛行制御、ナビゲーション、通信などのさまざまな技術が継続的に進歩しており、ドローンの開発はます...

アルトマンの巨大な AI 帝国を深く探ります。核融合プラントから不死技術センターまで、その規模は驚異的です。

制御された核融合から AGI、そしてチップ業界全体の再編まで、アルトマン氏の将来の AI 展望は、も...

...

上位 10 の古典的なソート アルゴリズムの概要 (Java コード実装を含む)

最近、ソートアルゴリズムを勉強していて、多くのブログを読んでいます。インターネット上のいくつかの記事...

...

Reverse Midjourneyがオンラインになりました!デジタルアーティストがスティーブ・ジョブズに魅了され、写真がボルヘスの精神世界に入る

ブラウザに住むアーティストが開発した、ニューヨーク発のAIカメラアプリが人気を集めている。もしスティ...

クラシック絵文字パッケージにこの「続編」があることが判明しました。ステーブルビデオのクリエイティブなゲームプレイが人気

AI を使って古典的な絵文字を動画にアップグレードする、この創造的な遊び方が最近かなり人気になってい...

知能ロボット技術の応用と開発動向

王耀南院士が2020年国家ロボット開発フォーラムで報告著者プロフィール:王耀南、中国工程院院士、湖南...