数秒で AI を学ぶ - ディープラーニングの一般的な 4 つの活性化関数: シグモイド、Tanh、ReLU、Softmax

数秒で AI を学ぶ - ディープラーニングの一般的な 4 つの活性化関数: シグモイド、Tanh、ReLU、Softmax

ディープラーニングにおける活性化関数は、ニューラル ネットワークの重要なコンポーネントです。活性化関数はニューラル ネットワークに非線形特性を導入し、複雑な入力と出力の関係をより適切に学習およびシミュレートできるようにします。活性化関数の選択と使用は、ニューラル ネットワークのパフォーマンスとトレーニング結果に重要な影響を及ぼします。

この記事では、よく使用される 4 つの活性化関数 (Sigmoid、Tanh、ReLU、Softmax) を紹介し、概要、使用シナリオ、利点、欠点、最適化ソリューションの 5 つの側面から説明して、活性化関数の包括的な理解を提供します。

1. シグモイド関数

シグモイド関数の式

はじめに: シグモイド関数は、任意の実数を 0 から 1 の間にマッピングできる、よく使用される非線形関数です。正規化されていない予測値を確率分布に変換するためによく使用されます。

シグモイド関数画像

使用シナリオ:

  • 出力は 0 から 1 の間に制限され、確率分布を表します。
  • 回帰問題またはバイナリ分類問題を処理します。

アドバンテージ:

  • 任意の入力範囲を 0 から 1 の間にマッピングすることができ、これは確率を表すのに適しています。
  • この範囲は制限されているため、計算がより簡単かつ高速になります。

デメリット: 入力値が非常に大きい場合、勾配が非常に小さくなり、勾配消失の問題が発生する可能性があります。

最適化計画:

  • ReLU などの他の活性化関数を使用する: ReLU やそのバリエーション (Leaky ReLU および Parametric ReLU) などの他の活性化関数を組み合わせて使用​​します。
  • ディープラーニング フレームワークの最適化手法を使用する:勾配クリッピング、学習率調整など、TensorFlow や PyTorch などのディープラーニング フレームワークが提供する最適化手法を活用します

2. Tanh関数

Tanh関数の式

概要: Tanh 関数はシグモイド関数の双曲線バージョンであり、任意の実数を -1 から 1 の間にマッピングします。

Tanh関数グラフ

使用例: シグモイドよりも急峻な関数が必要な場合、または -1 ~ 1 の範囲の出力が必要な特定のアプリケーションの場合。

利点: ダイナミック レンジが広くなり、曲線が急峻になるため、収束が速くなります。

デメリット: 入力が ±1 に近づくと Tanh 関数の導関数は急速に 0 に近づき、勾配消失の問題が発生します。

最適化計画:

  • ReLU などの他の活性化関数を使用する: ReLU またはそのバリエーション (Leaky ReLU および Parametric ReLU) などの他の活性化関数を組み合わせて使用​​します。
  • 残差接続を使用する: ResNet (残差ネットワーク) などの残差接続は効果的な最適化戦略です。

3. ReLU関数

ReLU関数の式

はじめに: ReLU 活性化関数は、数式で f(x) = max(0, x) で表される単純な非線形関数です。入力値が 0 より大きい場合、ReLU 関数はその値を出力します。入力値が 0 以下の場合、ReLU 関数は 0 を出力します。

ReLU関数イメージ

使用シナリオ: ReLU 活性化関数は、特に畳み込みニューラル ネットワーク (CNN) などのディープラーニング モデルで広く使用されています。その主な利点は、計算が簡単で、勾配消失問題を効果的に軽減し、モデルのトレーニングを加速できることです。したがって、ReLU は、ディープ ニューラル ネットワークをトレーニングするときに優先される活性化関数としてよく使用されます。

アドバンテージ:

  • 勾配消失問題を緩和: Sigmoid や Tanh などの活性化関数と比較して、ReLU は活性化値が正の場合に勾配を小さくしないため、勾配消失問題を回避します。
  • トレーニングの高速化: ReLU はシンプルさと計算効率に優れているため、モデルのトレーニング プロセスを大幅に高速化できます。

欠点:

  • 「デッドニューロン」問題:入力値が 0 以下の場合、ReLU の出力は 0 になり、ニューロンが機能しなくなります。この現象は「デッドニューロン」と呼ばれます。
  • 非対称性: ReLU の出力範囲は [0, +∞) であり、入力値が負の場合、出力は 0 になります。これにより、ReLU 出力の非対称分布が生じ、生成の多様性が制限されます。

最適化計画:

  • Leaky ReLU: Leaky ReLU は、入力が 0 以下の場合に小さな傾きを出力し、完全な「デッドニューロン」問題を回避します。
  • パラメトリック ReLU (PReLU): Leaky ReLU とは異なり、PReLU の傾きは固定されておらず、データに基づいて学習および最適化できます。

4. ソフトマックス関数

ソフトマックス関数の式

はじめに: Softmax は一般的に使用される活性化関数で、主に多重分類問題で使用され、入力ニューロンを確率分布に変換できます。その主な特徴は、出力値の範囲が 0 から 1 の間であり、すべての出力値の合計が 1 になることです。

ソフトマックス計算プロセス

使用シナリオ:

  • 多重分類タスクでは、ニューラル ネットワークの出力を確率分布に変換するために使用されます。
  • 自然言語処理、画像分類、音声認識などの分野で広く使用されています。

利点: 複数分類の問題では、各カテゴリに相対的な確率値を提供できるため、その後の意思決定と分類が容易になります。

デメリット:勾配消失や勾配爆発の問題が発生する可能性があります。

最適化計画:

  • ReLU などの他の活性化関数を使用する: ReLU またはそのバリエーション (Leaky ReLU および Parametric ReLU) などの他の活性化関数を組み合わせて使用​​します。
  • ディープラーニング フレームワークの最適化手法を使用する:バッチ正規化、重み減衰など、TensorFlow や PyTorch などのディープラーニング フレームワークによって提供される最適化手法を活用します。


<<:  MIT テクノロジーレビュー: 6 つの質問が生成 AI の未来を決定する

>>: 

推薦する

GPT-4とMidjourneyに加えて、Tan Pingの起業家チームは3D基本モデルを構築したいと考えています。

少し前にOpenAIが驚くべき生成効果を持つグラフィックモデルDALL・E 3をリリースしました。た...

スマートレコメンデーションの根底にあるロジックを理解するための4つのステップ

インテリジェント レコメンデーションは、ビジネス ニーズを満たすビッグ データと人工知能テクノロジに...

...

Python はとても使いやすいです! AI初心者でもすぐに顔検出を体験

[[423040]] Pythonを使用してAI認識テストを実行します。具体的な方法は、リアルタイム...

人工知能は医療従事者の燃え尽き症候群を軽減すると期待されている

[[266831]]臨床医は世界で最も困難な仕事の一つです。彼らは、高齢の患者層に対応するために24...

人工知能が社会にもっと役立つように

[[355038]]ビッグデータ時代には、「顔」が重要なデータ情報です。顔認識技術は、その独自性と優...

...

...

感情 AI はデジタルヘルスケアの未来となるでしょうか?

進化するヘルスケアとテクノロジーの世界では、「感情 AI」と呼ばれる画期的なイノベーションが変化の兆...

わずか6秒で、AIはあなたの声を聞くだけであなたの外見を説明できる

信じられますか?人工知能は最近、あなたの声からわずか6秒で性別、年齢、人種を判別し、さらにはあなたの...

最も人気のある 5 つの AI プログラミング言語

はじめに: AI 開発についてさらに詳しく知りたいですか? この記事では、AIプログラムを作成する際...

自動運転車が将来の都市生活に及ぼす影響

倫理的配慮無人運転車の問題は、自動運転車の倫理性の問題として要約できます。この問題の典型的なバージョ...

CNNの簡単な分析と、長年にわたるImageNetチャンピオンモデルの分析

[[189678]]今日は、ディープラーニングにおける畳み込みニューラル ネットワークのいくつかの原...

Hubo Technologyが「2019年グローバルフィンテックイノベーションTOP50」に選出されました

最近、世界をリードするインテリジェント金融検索エンジンであるHubo Technologyが「201...