Pandasの魅力:データ処理から機械学習まで

Pandasの魅力:データ処理から機械学習まで

パート01、  シリーズとデータフレーム: Pandas のコア

Pandas の 2 つの主要なデータ構造は、Series と DataFrame です。シリーズは、Python のリストに似た、1 次元のラベル付き配列です。 DataFrame は、リレーショナル データベースのテーブルに似た 2 次元のラベル付きデータ構造です。これら 2 つのデータ構造のシンプルさと柔軟性により、データの読み込み、処理、分析が非常に効率的になります。

図1 シリーズとデータフレームのデータ構造


パート02:データのクリーニングと処理の利便性

Pandas は、データの選択、フィルタリング、並べ替え、マージなど、豊富なデータ処理機能を提供します。 Pandas を使用すると、欠損値、重複データ、異常データを簡単に処理できるため、柔軟性を損なうことなくデータのクリーニングが簡単になります。

図2 Pandas fillna() は null 値を埋める


パート03: 高速ベクトル化演算

Pandas は、基礎となる NumPy 配列を通じてベクトル化された計算を実行し、データ処理を大幅に高速化します。これにより、ユーザーは明示的なループの使用を回避し、代わりにベクトル化された操作を通じてデータを処理できるようになります。これは、大規模なデータを処理する場合に特に重要です。


パート04: 強力なグループ化と集約機能

Pandas の groupby 操作を使用すると、特定の条件に基づいてデータをグループ化し、平均や合計の計算などの集計操作を実行できます。これにより、データの分析と要約が容易になり、複雑なデータ分析が簡単になります。

図3 Pandasのgroupbyグループ化操作


パート05: 時系列処理

Pandas は時系列データ専用のサポートを提供し、時間インデックス作成、再サンプリング、ローリング ウィンドウ計算などの操作を簡単に行うことができます。これにより、時系列データの処理と分析がより効率的になります。

図4 Pandas to_datetime()関数は系列を日付オブジェクトに変換します

パート06: まとめ: 他のデータサイエンスライブラリとのシームレスな統合

Pandas は、NumPy、Matplotlib、Scikit-learn などの他の一般的なデータ サイエンス ライブラリとシームレスに統合され、データ処理、視覚化、機械学習プロセス間の接続がよりスムーズになります。この統合により、データ サイエンティストはデータ変換やインターフェースの問題を過度に心配することなく、問題の解決に集中できるようになります。

パート07: 結論

Python データ サイエンス エコシステムのコア ライブラリである Pandas は、データの処理と分析のための強力なツールと利便性を提供します。データのクリーニングから機械学習まで、Pandas はその魅力を発揮し、データ サイエンティストの強力なアシスタントとなり、データ処理と分析の効率と利便性を大幅に向上させました。

👉参考文献

[1] McKinney, Wes. 「Python での統計計算のためのデータ構造」第 9 回 Python in Science カンファレンスの議事録。2010 年。

[2] ヴァンダープラス、ジェイク。「Pythonデータサイエンスハンドブック」オライリーメディア、2016年。

[3] Reback, Jeffrey R.、他「pandas-dev/pandas: Pandas」Zenodo、2021年。

[4] McKinney, Wes. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O'Reilly Media, 2017.

[5] Van Rossum、Guido、Fred L. Drake、「Python 3リファレンスマニュアル」。カリフォルニア州スコッツバレー:CreateSpace、2009年。

<<:  ディープラーニングにおける PyTorch と NumPy 間のデータ変換についてどれくらい知っていますか?

>>:  「クローズドループ」に向けての運転 | LMDrive: LLM に基づく初のクローズドループ エンドツーエンド自動運転

ブログ    

推薦する

Meta主任AI研究者ヤン・リクン氏:今日のAIは愚かであり、規制当局は我々に干渉すべきではない

ソーシャルメディアFacebookの親会社Metaの主任人工知能研究者ヤン・ルカン氏は10月20日、...

人工知能とビッグデータの完璧な組み合わせ

人工知能(AI)は数十年前から存在しています。しかし、最近では「ビッグデータ」の登場により注目が高ま...

市場情報調査 | モノのインターネット市場における人工知能

現在、機械学習とディープラーニング技術は、IoT 向け人工知能の世界市場で 5.7% の CAGR ...

...

プロンプトによるプライバシー漏洩が心配ですか?このフレームワークにより、LLaMA-7Bは安全性の推論を実行できる。

現在、ディープラーニングサービスを提供する事業者は数多く存在します。これらのサービスを利用する際には...

...

YOLOプロジェクト復活!マスターが後を継ぎ、YOLOの父が2か月間引退し、v4バージョンが正式にリリースされました

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

MITは、Natureの表紙に掲載され、非コード領域のDNA変異を予測するディープラーニングフレームワークを設計した。

人間の細胞にはそれぞれ多数の遺伝子が含まれていますが、いわゆる「コーディング」DNA配列は、ヒトゲノ...

AI は鉱業をどのように改善できるのでしょうか?

[[279594]]データとマイニングという言葉を組み合わせると、IT とテクノロジーが連携して企...

学者は大喜び!MetaがPDFと数式を変換できるOCRツールをリリース

私たちが通常、論文や科学文献を読むときに目にするファイル形式は、基本的に PDF (Portable...

ユネスコは世界初の生成型AI教育ガイドを発行し、各国に関連法規制の策定、教師研修の実施を要請

9月7日、ユネスコは「教育と研究における生成AIの利用に関するガイドライン」を発行しました。これは、...

大手モデルは「チャートをブラッシュアップ」するために近道をとっているのでしょうか?データ汚染問題は注目に値する

生成 AI の初年度で、すべての人の仕事のペースが大幅に加速しました。特に、今年は誰もが大型モデルの...

機械はどのように学習するのでしょうか?人工知能の「双方向戦闘」を詳しく解説

金庸の武侠小説『射雁英雄伝』には、桃花島に閉じ込められた「悪童」周伯同が「左右の格闘術」を編み出した...

これらの6つのヒントを活用してAIガバナンスの問題を解決しましょう

AI ガバナンスは、データ プライバシー、アルゴリズムのバイアス、コンプライアンス、倫理など、企業内...

1行のコードでsklearnの操作が数千倍高速化

1 はじめにみなさんこんにちは、フェイ先生です。機械学習の定番フレームワークであるscikit-l...