Pandasの魅力:データ処理から機械学習まで

Pandasの魅力:データ処理から機械学習まで

パート01、  シリーズとデータフレーム: Pandas のコア

Pandas の 2 つの主要なデータ構造は、Series と DataFrame です。シリーズは、Python のリストに似た、1 次元のラベル付き配列です。 DataFrame は、リレーショナル データベースのテーブルに似た 2 次元のラベル付きデータ構造です。これら 2 つのデータ構造のシンプルさと柔軟性により、データの読み込み、処理、分析が非常に効率的になります。

図1 シリーズとデータフレームのデータ構造


パート02:データのクリーニングと処理の利便性

Pandas は、データの選択、フィルタリング、並べ替え、マージなど、豊富なデータ処理機能を提供します。 Pandas を使用すると、欠損値、重複データ、異常データを簡単に処理できるため、柔軟性を損なうことなくデータのクリーニングが簡単になります。

図2 Pandas fillna() は null 値を埋める


パート03: 高速ベクトル化演算

Pandas は、基礎となる NumPy 配列を通じてベクトル化された計算を実行し、データ処理を大幅に高速化します。これにより、ユーザーは明示的なループの使用を回避し、代わりにベクトル化された操作を通じてデータを処理できるようになります。これは、大規模なデータを処理する場合に特に重要です。


パート04: 強力なグループ化と集約機能

Pandas の groupby 操作を使用すると、特定の条件に基づいてデータをグループ化し、平均や合計の計算などの集計操作を実行できます。これにより、データの分析と要約が容易になり、複雑なデータ分析が簡単になります。

図3 Pandasのgroupbyグループ化操作


パート05: 時系列処理

Pandas は時系列データ専用のサポートを提供し、時間インデックス作成、再サンプリング、ローリング ウィンドウ計算などの操作を簡単に行うことができます。これにより、時系列データの処理と分析がより効率的になります。

図4 Pandas to_datetime()関数は系列を日付オブジェクトに変換します

パート06: まとめ: 他のデータサイエンスライブラリとのシームレスな統合

Pandas は、NumPy、Matplotlib、Scikit-learn などの他の一般的なデータ サイエンス ライブラリとシームレスに統合され、データ処理、視覚化、機械学習プロセス間の接続がよりスムーズになります。この統合により、データ サイエンティストはデータ変換やインターフェースの問題を過度に心配することなく、問題の解決に集中できるようになります。

パート07: 結論

Python データ サイエンス エコシステムのコア ライブラリである Pandas は、データの処理と分析のための強力なツールと利便性を提供します。データのクリーニングから機械学習まで、Pandas はその魅力を発揮し、データ サイエンティストの強力なアシスタントとなり、データ処理と分析の効率と利便性を大幅に向上させました。

👉参考文献

[1] McKinney, Wes. 「Python での統計計算のためのデータ構造」第 9 回 Python in Science カンファレンスの議事録。2010 年。

[2] ヴァンダープラス、ジェイク。「Pythonデータサイエンスハンドブック」オライリーメディア、2016年。

[3] Reback, Jeffrey R.、他「pandas-dev/pandas: Pandas」Zenodo、2021年。

[4] McKinney, Wes. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O'Reilly Media, 2017.

[5] Van Rossum、Guido、Fred L. Drake、「Python 3リファレンスマニュアル」。カリフォルニア州スコッツバレー:CreateSpace、2009年。

<<:  ディープラーニングにおける PyTorch と NumPy 間のデータ変換についてどれくらい知っていますか?

>>:  「クローズドループ」に向けての運転 | LMDrive: LLM に基づく初のクローズドループ エンドツーエンド自動運転

推薦する

...

ディープラーニングの学習をすぐに始めないでください。非常に詳細な AI 専門家のロードマップ、GitHub は数日間で 2.1k のスターを獲得

この学習ロードマップは、人工知能分野のほぼすべてのコンテンツを網羅しています。マウスをクリックするだ...

...

...

垂直型AIスタートアップと水平型AIスタートアップ: 異なる製品ルートの選択

AIスタートアップは主に2つのスタイルに分けられます。本日の記事では、その両方を分析して見ていきます...

中国製ドローンが日本で試験飛行、日本の農業に参入へ

[[227827]] 福岡県香春町で先日、農薬散布ドローンの試験飛行が行われた。以前は、1.8エーカ...

AI による効率化: データセンターのエネルギー使用を再定義

今日のデジタル時代において、データ センターは、私たちのつながった世界を動かし続けるための膨大な情報...

Adobe、Adobe Experience Platform モバイル パッケージをリリース

中国、北京 — 2019 年 11 月 26 日 — Adob​​e は先日、新しいモバイル パッ...

ディープラーニングが従来の方法ほど効果的ではない典型的な事例にはどのようなものがありますか?

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

北京冬季オリンピックのブラックテクノロジーが外国人に賞賛される:このロボットがある限り、防疫は安全

昨日、北京冬季オリンピックはブラックテクノロジーでいっぱいだとネットユーザーが言っているのを見ました...

張晨成: 第四パラダイムインテリジェントリスク管理ミドルプラットフォームアーキテクチャ設計と応用

共有は主に次の 5 つのポイントを中心に行われます。リスク管理センターの設計背景戦略のフルサイクル管...

IoTの未来が機械学習に依存する理由

モノのインターネットは膨大な量のデータを生成します。そのデータは、都市が事故や犯罪を予測するのに役立...

ビッグデータと AI: 3 つの実際の使用例

ビッグデータと人工知能は、企業が新しい方法で顧客体験を向上させるのに役立ちます。 AIとビッグデータ...

2020年の人工知能レビュー:AIが時代に知性をもたらす

2020年は人工知能(AI)にとって節目の年です。今年、新型コロナウイルス感染症のパンデミックが世界...