3月にGithubで最も人気のあるデータサイエンスと機械学習のプロジェクト

3月にGithubで最も人気のあるデータサイエンスと機械学習のプロジェクト

Analytics Vidhya は最近、3 月の GitHub で上位 5 つのデータ サイエンスおよび機械学習プロジェクトを発表しました。今月のリストには、Google Brain の AstroNet から人工ニューラル ネットワークの視覚化ツールまでが含まれています。これらはすべて、機械学習の視野を確実に広げてくれる素晴らしいプロジェクトです。

1. 人物ブロッカー

[[226902]]

Person Blocker は、事前にトレーニングされたニューラル ネットワークを使用して、画像内のすべての人物を自動的にブロックする Python ライブラリです。このアルゴリズムの基礎となる実装は、MS COCO データセットで事前トレーニングされた Mask R-CNN ですが、GPU は必要ありません。さらに、ポートレートだけでなく、キリンや車など、乗り物、動物、電子機器など、最大 80 種類のオブジェクトをマスクできます。 (プロジェクトアドレス: https://github.com/minimaxir/person-blocker)

2. アストロネット

2017年12月、Google Brain チームは、天文学データを処理するディープニューラルネットワークモデルである Astronet アプリケーションによって 2 つの新しい惑星が発見されたことを明らかにしました。これは、機械学習が今日の世界に与えている大きな影響を示す大きな発見です。

現在、Google Brain はこの技術の完全なコードを公開し、誰でも利用できるようにしています。このモデルは畳み込みニューラル ネットワーク (CNN) に基づいています。 (プロジェクトアドレス: https://feedburner.google.com/fb/a/mailverify?uri=Avbytes)

3. ANN ビジュアライザー

ANN Visualizer は、たった 1 行のコードを使用して人工ニューラル ネットワークを視覚化できる Python ライブラリです。これは Keras と連携するように設計されており、Python の graphviz ライブラリを利用して、構築しているニューラル ネットワークを表すきれいで視覚的なグラフを作成します。 (プロジェクトアドレス: https://github.com/Prodicode/ann-visualizer)

4. ファストパンダ

Pandas は、データ サイエンティストや開発者が利用できる最も柔軟で強力なツールの 1 つです。非常に柔軟性が高く、特定のタスクをさまざまな方法で実行できます。このプロジェクトの目的は、これらの状況で利用可能なさまざまな方法をベンチマークすることです。さらに、numpy と pandas の両方の機能専用のセクションがあります。 (プロジェクトアドレス: https://github.com/mm-mansour/Fast-Pandas)

5. テンソルフロー

TensorFlow.js は、機械学習モデルのトレーニングとデプロイのためのオープンソースのハードウェア アクセラレーション JavaScript ライブラリです。 TensorFlow.js の API は柔軟かつ直感的で、低レベルの JavaScript 線形代数ライブラリと高レベルのレイヤー API を使用して、ブラウザー内で完全な機械学習モデルを定義、トレーニング、実行できます。 (プロジェクトアドレス: https://github.com/jimfleming/tensorflowjs)

6. カフェ64

Caffe64 は、シンプルで小型ですが、非常に強力なニューラル ネットワーク ライブラリです。 Caffe64 は、コンパイルが最も簡単なライブラリであり、最も軽量なニューラル ネットワーク ライブラリであると考えられています。 (プロジェクトアドレス: https://github.com/dfouhey/caffe64)

7. TensorFlowハブ

TensorFlow Hub は、機械学習モデルの再利用可能な部分の公開、発見、使用を容易にするライブラリです。新しいタスクに使用できる事前トレーニング済みの TensorFlow モデルであるモジュールを提供します。関連するタスクのモジュールを再利用することで、次のことが可能になります。

  • より小さなデータセットでモデルをトレーニングする
  • 一般化の改善
  • トレーニングを大幅に高速化します (プロジェクト アドレス: https://github.com/tensorflow/hub)

<<:  人工知能にブレーキをかけるべき6つの理由

>>:  Baidu がカスタマイズされたトレーニングおよびサービス プラットフォーム EasyDL を全面公開: 誰もが AI を使えるように

ブログ    
ブログ    

推薦する

...

コンピューティングパワーのコストが急激に上昇したため、AIスタートアップがGoogleやMicrosoftなどの大手に挑戦することが難しくなった。

2月20日のニュースによると、コンピューティングコストが急騰しているため、人工知能業界の新興企業は...

アルパカたちはどこまで来たのでしょうか?研究によると、最高のものはGPT-4のパフォーマンスの68%を達成できる。

大規模言語モデルは最近、かつてないほどの注目を集めています。急速に変化する環境において、オープンソー...

ICCV 2021 | 生成されたデータに基づく顔認識

[[422257]]この記事はLeiphone.comから転載したものです。転載する場合は、Leip...

防衛分野で人工知能はどのような役割を果たすのでしょうか?

調査によると、人工知能技術は勢いを増しており、防衛産業にとって極めて重要であることが分かっています。...

...

...

ディスカッション | 人工知能は同時通訳に取って代わることができるか?

[[254687]]少し前に同時通訳者がiFlytekを「AI同時通訳詐欺」と非難し、ネット上で騒...

無人RV、全電動、未来は明るい

科学技術の急速な発展は、自動車産業の技術進歩を直接的に推進してきました。自動運転は自動車と技術の結晶...

2019年ディープラーニングフレームワークランキング(トップ10からトップ3まで)

【51CTO.comオリジナル記事】 1. 前に書く5Gは2019年上半期の輝く「星」と言えるが、...

10年後に人工知能のリーダーとなる国はどこでしょうか?アメリカ国民:中国であるべきだ

ロシアメディアは、中国の人工知能(AI)産業の急速な発展を背景に、米シンクタンクのブルッキングス研究...

データが「生産手段」となるとき、透かし技術を使ってAIトレーニングデータの著作権を保護する方法をまとめた3つの論文

1. はじめに - AI トレーニング データに透かしを追加する理由ディープ ニューラル ネットワー...

...

OpenAIがSoraを発表: 現実を再定義する画期的なビデオ生成モデル

概要:ほんの数日前、ビッグ アイヴァンが携帯電話でソーシャル メディアをちょっとチェックしたとき、信...

人工知能とモノのインターネットの動的統合の探究(I)

AI と IoT の統合により、私たちの日常生活に新たな効率、自動化、インテリジェンスがもたらされ...