半教師あり学習とその応用シナリオの簡単な分析

半教師あり学習とその応用シナリオの簡単な分析

ラボガイド

インターネットの発展により、企業はより多くのデータを入手できるようになりました。これらのデータは、企業がユーザー、つまり顧客像をより深く理解するのに役立ち、ユーザーエクスペリエンスを向上させるためにも使用できます。しかし、これらのデータにはラベル付けされていないデータが大量に含まれている可能性があります。すべてのデータに手動でラベルを付ける場合、2 つのデメリットがあります。まず、時間がかかり、非効率的です。データの量が多くなるほど、より多くの人材を雇う必要があり、時間がかかり、コストも高くなります。次に、ユーザー規模が大きくなると、手動のラベル付けの速度がデータの増加に追いつかなくなります。

パート01.半教師あり学習とは何ですか?

半教師あり学習とは、ラベル付きデータとラベルなしデータの両方を使用してモデルをトレーニングすることを指します。半教師あり学習では通常、ラベル付きデータに基づいて属性空間を構築し、ラベルなしデータから有効な情報を抽出して属性空間を埋める (または再構築する) ことになります。そのため、半教師あり学習の初期トレーニング セットは通常、ラベル付きデータ セット D1 とラベルなしデータ セット D2 に分割されます。次に、前処理や特徴抽出などの基本的な手順を経て、半教師あり学習モデルがトレーニングされます。トレーニングされたモデルは、実稼働環境で使用され、ユーザーにサービスを提供します。

パート 02: 半教師あり学習の前提

ラベル付けされたデータを「有用な」情報で効果的に補足するために、データ分布などの側面についていくつかの仮定が立てられます。半教師あり学習の基本的な前提は、p(x) には p(y|x) に関する情報が含まれている、つまり、ラベルなしデータには、ラベル予測に役立ち、ラベル付きデータとは異なる、またはラベル付きデータから抽出するのが難しい情報が含まれている必要があるということです。さらに、アルゴリズムに役立ついくつかの仮定があります。たとえば、類似性仮説 (平滑性仮説) は、データ サンプルによって構築された属性空間では、近いまたは類似のサンプルは同じラベルを持つことを意味します。低密度分離仮説は、データ サンプルが少ない場所では、異なるラベルを持つデータを区別できる決定境界があることを意味します。

上記の仮定の主な目的は、ラベル付きデータとラベルなしデータが同じデータ分布から取得されることを示すことです。

パート 03:半教師あり学習アルゴリズムの分類

半教師あり学習アルゴリズムは数多くありますが、大まかにトランスダクティブ学習帰納的モデルに分けられます。この2つの違いは、モデル評価に使用するテストデータセットの選択にあります。直接半教師あり学習とは、予測する必要があるデータセットがトレーニングに使用されるラベルなしデータセットであり、学習の目的は予測結果の精度をさらに向上させることです。帰納的学習は、完全に未知のデータセットのラベルを予測します。

さらに、一般的な半教師あり学習アルゴリズムの手順は次のとおりです。最初の手順では、ラベル付きデータでモデルをトレーニングし、次にこのモデルを使用してラベルなしデータを疑似ラベル付けし、疑似ラベルとラベル付きデータを新しいトレーニング セットに結合し、このトレーニング セットで新しいモデルをトレーニングし、最後にこのモデルを使用して予測データ セットにラベル付けします。

パート04. 要約

半教師あり学習の最大の問題は、多くの場合、モデルのパフォーマンスがラベル付きデータセットに依存し、ラベル付きデータセットの品質が高いことが求められることです。場合によっては、半教師あり学習モデルの予測精度は、ラベル付きデータセットに基づく教師ありモデルの予測精度とそれほど変わりません。逆に、半教師ありモデルは、ラベルなしデータから有効な情報を効果的に抽出するために、より多くのリソースを消費します。したがって、半教師あり学習の開発方向は、アルゴリズムの堅牢性とデータ抽出の有効性を向上させることです。

現在、PU 学習 (ポジティブラベルなし学習) は、半教師あり学習の分野で人気のアルゴリズムです。このタイプのアルゴリズムの主な適用シナリオは、ポジティブデータとラベルなしデータのみを含むデータセットです。利点は、シナリオによっては、比較的信頼性の高い正のラベル データ セットを簡単に取得でき、データ量が比較的多いことです。たとえば、スパム検出で適切なメールを簡単に取得できます。

<<:  コンピューティングパワーとは正確には何でしょうか?

>>: 

ブログ    

推薦する

AIと宇宙技術が日常生活をどう改善するか

衛星から都市計画まで、人工知能の進歩は新たな洞察をもたらしています。 [[270081]]宇宙技術と...

完全自動サポートにより、ドローンは真の「無人」になります。

ドローンについては皆さんもよくご存知だと思います。近年、無人運用の需要が継続的に高まり、さまざまな最...

誰でも簡単にウェブサイトを構築できる 5 つの AI ウェブサイトビルダー

今日は、5 つの AI ウェブサイト ビルダー ツールをご紹介します。これらの AI ツールを使用す...

ケーススタディ | 埋め込みに基づく特徴セキュアな計算

[[331789]]序文従来のデータの公開と共有の方法の多くは、生のデータをプレーンテキストで直接出...

...

5Gは19の業界に浸透?これらの5つの分野はもっと注目に値する

2019年、「5G」は大いに期待されるテクノロジーの流行語となり、その人気は間違いなく人工知能に劣り...

自動運転開発ツールチェーンの現状と動向を20,000語で解説

要点: 1. 自動車会社が独自の自動運転システムを開発することがトレンドとなっている。 2. MBD...

機械学習エンジニアに必要な 5 つのソフトスキル

[[395964]]導入機械学習エンジニアの役割は通常、プログラミング、ソフトウェア実装、データ分析...

AIoTとは何ですか?なぜそれが突然、インテリジェント製造の主流トレンドになったのでしょうか?

人工知能(AI)とモノのインターネット(IoT)の組み合わせにより、自律走行車やスマートウェアラブル...

モザイクを使用するのは安全ですか? AIがモザイクを除去し、導入から3日間で約7,000個の星を獲得

パスワードを隠すためにまだモザイクを使用していますか? 「見透かされる」ことには注意してください。ピ...

5G時代、移動ロボットは知能でどのように勝利できるのでしょうか?

移動ロボットは、環境認識、動的意思決定と計画、行動制御と実行などの複数の機能を統合した総合システムで...

...

電力業界における人工知能開発の現状

今日は、人類が初めて電気を家庭や企業に供給するようになってから 140 年目の記念日です。電力産業は...

「未来、人類、そして人工知能」についての白熱した議論です

[51CTO.comより引用] モバイルインターネット、モノのインターネット、ビッグデータ、人工知能...