10月9日のニュースによると、AIビッグモデルは近年、人工知能の分野で話題になっており、リアルなテキストや画像を生成したり、人間と流暢に会話したりするなど、さまざまな驚くべき機能を実現できるという。しかし、これらの大規模モデルの背後には、生データにラベルを追加し、AI テクノロジーのトレーニングに必要な膨大なデータを提供するために日々懸命に取り組んでいる無名のデータ ラベラーのグループが存在します。 データラベラーの仕事は簡単ではありません。退屈な作業、低収入、長期的な不安定さ、いつでも交代されるリスクに直面しなければなりません。彼らは AI 技術の発展の礎ですが、注目や尊敬を受けることはほとんどありません。 Tech Planet によると、データラベラーへの支払いは最も原始的な出来高制で行われ、ほとんどの従事者は月に 5,000 元以下の収入しか得られない。彼らの中には大学を卒業した人もいれば、母親になった人もいれば、転職した人もいます。彼らは、第3、第4級都市のキュービクルで画像、テキスト、音声などのデータを処理し、大手インターネット企業や自動車会社にサービスを提供しています。 IT Home は、データ ラベリング業界も浮き沈みを経験していることに気づきました。 AI技術への期待が急上昇していた2017年には、データラベラーは2Dフレーム描画で50セントという高収入を得ることができました。しかし、業界内の競争が激化し、技術の発展が遅れているため、データラベリングの単価はどんどん下がり、現在では最低でも4セントしかありません。 データラベリング企業も大きなプレッシャーに直面しています。元からの注文を獲得するためには、一定の規模と資金的余裕が必要であり、回収期間が長い、従業員の離職率が高い、品質やサイクルが不安定などの問題を抱えている。海天瑞盛は現在、データラベリング業界で初めてメインボードに上場した企業である。昨年の利益率は10%を超えたばかりだったが、今年上半期は赤字に陥った。 データラベラーにとってさらに心配なのは、自分たちが作成に協力した AI によってすぐに置き換えられるかもしれないということだ。国内外のいくつかの企業では、市場で主流の大規模モデルを使用してデータセットにラベルを付け、データを自動的にラベル付けできるツールを開発しています。これらのツールは、ラベル付けの効率を向上させ、コストを削減し、手作業に近いかそれ以上の精度を実現すると主張しています。 もちろん、すべてのデータラベル付けを AI で置き換えることはできません。医療、金融、自動運転などの分野など、専門知識と論理的分析能力を必要とする一部のデータラベリングには、依然として人間の参加が必要です。しかし、これは業界の敷居が上がり続けることも意味します。データラベラーがこの業界で生き残りたいのであれば、さらなる学習と努力が必要になるかもしれません。 |
<<: 金融規制当局が注意喚起:「AIによる顔の改変」などの新たな詐欺手法に注意
>>: クロスモーダルトランスフォーマー: 高速かつ堅牢な 3D オブジェクト検出に向けて
アメリカのテクノロジー大手は、この流行に対して全力で対応し、その力は衰えるどころか増した。これら...
アップグレードを行わないと、現代の PC は時間の経過とともに必然的に遅くなっていきます。しかし、M...
人口は飛躍的に増加しており、農業は人口を養う問題を解決する必要がある。農業をより効率的かつ持続可能な...
2021年CCTV「3.15」ガラで、多くの店舗がカメラを使って顔情報を取得している事例が暴露され、...
[[395482]] [51CTO.com クイック翻訳]近年、人工知能 (AI) と機械学習 (M...
[[387945]]この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI...
Ascend人工知能産業サミットフォーラムが上海で開催されました。フォーラムでは、ビッグモデルの共同...
AI技術の応用は、一部の業界からあらゆる分野へ、一部のシーンからあらゆるシーンへ、ローカルな探索か...
Chiplet は、製品の歩留まり、パッケージの歩留まり、さまざまなコストなどを考慮しながら、大規...
[[414852]]この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI...
データの不足から現在では大量のデータが存在するまで、近年では利用可能なデータの量が飛躍的に増加し、ビ...
[[374390]]人工知能 (AI) は、組織によって競争上の優位性を獲得するための重要なテクノロ...
[[403226]]従来の講義には通常、PDF スライドのセットが付属します。一般的に、このような講...