不均衡なデータを処理する Python ライブラリ トップ 10

不均衡なデータを処理する Python ライブラリ トップ 10

データの不均衡は機械学習における一般的な課題であり、あるクラスの数が他のクラスを大幅に上回り、偏ったモデルや不十分な一般化につながる可能性があります。不均衡なデータを効率的に処理するのに役立つさまざまな Python ライブラリがあります。この記事では、機械学習で不均衡なデータを処理するための上位 10 個の Python ライブラリを紹介し、各ライブラリのコード スニペットと説明を提供します。

1. 不均衡な学習

imbalanced-learn は、データセットの再バランス調整のためのさまざまな手法を提供する scikit-learn の拡張機能です。オーバーサンプリング、アンダーサンプリング、および組み合わせ方式を提供します。

 from imblearn.over_sampling import RandomOverSampler ros = RandomOverSampler() X_resampled, y_resampled = ros.fit_resample(X, y)

2. スモート

SMOTE はデータセットのバランスをとるために合成サンプルを生成します。

 from imblearn.over_sampling import SMOTE smote = SMOTE() X_resampled, y_resampled = smote.fit_resample(X, y)

3. アダシン

ADASYN は、いくつかのサンプルの密度に基づいて合成サンプルを適応的に生成します。

 from imblearn.over_sampling import ADASYN adasyn = ADASYN() X_resampled, y_resampled = adasyn.fit_resample(X, y)

4. ランダムアンダーサンプラー

RandomUnderSampler は、多数派クラスからサンプルをランダムに削除します。

 from imblearn.under_sampling import RandomUnderSampler rus = RandomUnderSampler() X_resampled, y_resampled = rus.fit_resample(X, y)

5. トメックリンク

Tomek Linksは、異なるクラスの最も近い隣接ペアを削除し、複数のサンプルの数を減らすことができます。

 from imblearn.under_sampling import TomekLinks tl = TomekLinks() X_resampled, y_resampled = tl.fit_resample(X, y)

6. SMOTEENN (SMOTE + 編集された最近傍)

SMOTEENN は SMOTE と Edited Nearest Neighbors を組み合わせたものです。

 from imblearn.combine import SMOTEENN smoteenn = SMOTEENN() X_resampled, y_resampled = smoteenn.fit_resample(X, y)

7. SMOTETomek (SMOTE + Tomek リンク)

SMOTEENN は、オーバーサンプリングとアンダーサンプリングのために SMOTE と Tomek Links を組み合わせます。

 from imblearn.combine import SMOTETomek smotetomek = SMOTETomek() X_resampled, y_resampled = smotetomek.fit_resample(X, y)

8. イージーアンサンブル

EasyEnsemble は、多数派クラスのバランスの取れたサブセットを作成するアンサンブル メソッドです。

 from imblearn.ensemble import EasyEnsembleClassifier ee = EasyEnsembleClassifier() ee.fit(X, y)

9. バランスランダムフォレスト分類器

BalancedRandomForestClassifier は、ランダム フォレストとバランスのとれたサブサンプリングを組み合わせたアンサンブル メソッドです。

 from imblearn.ensemble import BalancedRandomForestClassifier brf = BalancedRandomForestClassifier() brf.fit(X, y)

10. RUSBoost分類器

RUSBoostClassifier は、ランダム アンダーサンプリングとブースティングを組み合わせたアンサンブル メソッドです。

 from imblearn.ensemble import RUSBoostClassifier rusboost = RUSBoostClassifier() rusboost.fit(X, y)

要約する

不均衡なデータに対処することは、正確な機械学習モデルを構築する上で非常に重要です。これらの Python ライブラリは、この問題に対処するためのさまざまなテクニックを提供します。データセットと問題に応じて、データを効果的にバランスさせる最も適切な方法を選択できます。

<<:  チンチラの死: 十分に訓練すれば小型モデルでも大型モデルを上回る性能を発揮できる

>>:  ガウス混合モデルを用いた多峰性分布の分離

ブログ    

推薦する

コンパクトなBEVインスタンス予測フレームワーク: PowerBEV

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

誰もが今から準備すべき、2020 年のキャリアを変える 6 つのテクノロジー トレンド

[51CTO.com クイック翻訳] 新しいテクノロジーの導入により、私たちの職場は変化しています。...

DeepMindの「フィッシングエンフォースメント」:AIに間違った発言をさせ、数万件の危険な発言を発見させる

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

人工知能はますます急速に発展しています。将来、人工知能は人間に取って代わるのでしょうか?

人工知能の発展は人類の進化に似ていますが、そのプロセスはより短いものです。人間は自らの知恵を駆使して...

MobileSAM: モバイルデバイスに高いパフォーマンスをもたらす軽量の画像セグメンテーションモデル

1. はじめにモバイルデバイスの普及とコンピューティング能力の向上により、画像セグメンテーション技術...

どうやってパートナーを見つけたのですか?日本のネットユーザー:国はAIを使って配信している

星野源のような容姿の人を満足させることは、実はとても簡単です。ついに国家がオブジェクトを割り当てる時...

各行列乗算には1光子未満が使用され、手書き数字認識の精度は90%を超え、光ニューラルネットワークの効率は数桁向上します。

現在、ディープラーニングは、ゲーム、自然言語翻訳、医療画像分析など、ますます多くのタスクで人間を上回...

2023 年までにデータセンターで注目される AI と ML の 10 大アプリケーション

人工知能 (AI) と機械学習 (ML) は、データセンター分野の重要なテクノロジーとなっています。...

2023年以降を一変させる5G IoTテクノロジートップ10

IoT 分野の拡大と発展により、多くの変革的テクノロジーがもたらされるでしょう。家庭から自動車、ウ...

エッジAI: インテリジェンスをソースに近づける

人工知能の発展により、データをアルゴリズムに渡すのではなく、アルゴリズムがデータを処理するようになり...

メタ副社長:生成AIはまだ愚かなので、リスクを心配する必要はありません

メタの副社長兼国際問題担当会長で元英国副首相のニック・クレッグ氏は、BBCとの最近のインタビューで、...

人工知能はサイバーセキュリティにとって役立つのか、それとも脅威となるのか?

企業に対するセキュリティ上の脅威は常に存在していましたが、インターネットの発展により、脅威は物理空間...

...

高速ドローンは森の中を自律的に飛行し、旅の間中独自のルートを計画し、最高時速40キロメートルで飛行する。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...