データの不均衡は機械学習における一般的な課題であり、あるクラスの数が他のクラスを大幅に上回り、偏ったモデルや不十分な一般化につながる可能性があります。不均衡なデータを効率的に処理するのに役立つさまざまな Python ライブラリがあります。この記事では、機械学習で不均衡なデータを処理するための上位 10 個の Python ライブラリを紹介し、各ライブラリのコード スニペットと説明を提供します。 1. 不均衡な学習imbalanced-learn は、データセットの再バランス調整のためのさまざまな手法を提供する scikit-learn の拡張機能です。オーバーサンプリング、アンダーサンプリング、および組み合わせ方式を提供します。
2. スモートSMOTE はデータセットのバランスをとるために合成サンプルを生成します。 3. アダシンADASYN は、いくつかのサンプルの密度に基づいて合成サンプルを適応的に生成します。 4. ランダムアンダーサンプラーRandomUnderSampler は、多数派クラスからサンプルをランダムに削除します。 5. トメックリンクTomek Linksは、異なるクラスの最も近い隣接ペアを削除し、複数のサンプルの数を減らすことができます。
6. SMOTEENN (SMOTE + 編集された最近傍)SMOTEENN は SMOTE と Edited Nearest Neighbors を組み合わせたものです。
7. SMOTETomek (SMOTE + Tomek リンク)SMOTEENN は、オーバーサンプリングとアンダーサンプリングのために SMOTE と Tomek Links を組み合わせます。
8. イージーアンサンブルEasyEnsemble は、多数派クラスのバランスの取れたサブセットを作成するアンサンブル メソッドです。
9. バランスランダムフォレスト分類器BalancedRandomForestClassifier は、ランダム フォレストとバランスのとれたサブサンプリングを組み合わせたアンサンブル メソッドです。
10. RUSBoost分類器RUSBoostClassifier は、ランダム アンダーサンプリングとブースティングを組み合わせたアンサンブル メソッドです。 要約する不均衡なデータに対処することは、正確な機械学習モデルを構築する上で非常に重要です。これらの Python ライブラリは、この問題に対処するためのさまざまなテクニックを提供します。データセットと問題に応じて、データを効果的にバランスさせる最も適切な方法を選択できます。 |
<<: チンチラの死: 十分に訓練すれば小型モデルでも大型モデルを上回る性能を発揮できる
検出が難しい膠芽腫などの癌の生存率は1桁ですが、早期治療には検出、治療、監視のための高度な技術が必要...
ハイテクの継続的な発展に伴い、インテリジェントビル通信システムの構成は絶えず変化し、要件は絶えず増加...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
人工知能については、誰もがよくご存知だと思います。実際、人工知能には幅広い知識が含まれており、さまざ...
[[428794]]この記事はWeChatの公開アカウント「WeDoctor Front-end ...
[[410827]] [51CTO.com クイック翻訳]急速な技術開発と進歩の時代において、個人情...
【51CTO.com クイック翻訳】チェックアウト時に銀行カード取引が拒否されると、イライラしたり恥...
30年以上沈黙していた「人工知能」という言葉は、ここ2年で非常に人気が高まり、テクノロジー企業の主...
自動化農業の需要を満たすには、栽培者は栽培シーズンを通して作物の成長と健康に関する正確な情報を入手し...
著者 | 崔昊レビュー | Chonglouまとめこの記事では、ナレッジ グラフと大規模言語モデルを...
[[266878]]中国における人工知能に関する議論の多くは体系化されておらず、断片的であり、人工...
今日、企業組織はこれまで以上に人工知能 (AI) と機械学習 (ML) の可能性を信頼し、投資してい...
今朝(8日)、第13期全国人民代表大会第5回会議第二回全体会議が開催され、最高人民法院と最高人民検察...