GitHubが11,000スターを獲得、ソフトウェア開発プロセスをシミュレート、オープンソースフレームワークMetaGPTが爆発的に増加

GitHubが11,000スターを獲得、ソフトウェア開発プロセスをシミュレート、オープンソースフレームワークMetaGPTが爆発的に増加

大規模言語モデル (LLM) が成熟するにつれて、それを使用して AI エージェントを構築することが新たな研究方向になりました。既存の研究では、LLM を使用してマルチエージェントを駆動し、いくつかのタスクを自律的に完了させています。

しかし、既存の研究は主に単純なタスクに焦点を当てており、複雑なタスクの調査が不足しています。これは主に、大規模な言語モデルが「幻覚」の問題を抱えているためです。特に、複数のエージェントが相互に作用すると、幻覚がさらに増幅され、複雑なタスクに使用できなくなります。

最近、「MetaGPT」と呼ばれるオープンソースフレームワークがこの課題の解決を試みました。 MetaGPT は、メタプログラミング アプローチとして、LLM 駆動型マルチエージェント コラボレーションに効果的なヒューマン ワークフローを組み込むことを目的としています。 MetaGPT は、GitHub にオンラインになってから数日以内に 11.1k を超えるスターを獲得しました。

プロジェクトアドレス: https://github.com/geekan/MetaGPT

簡単に言えば、MetaGPT を使用すると、マルチエージェント コラボレーション プロセスでソフトウェア開発会社のワークフローをシミュレートできます。このワークフローでは、各エージェントに役割を割り当て、エージェントのコラボレーション プロセスを計画する必要があります。ソフトウェア開発会社の人員配置は、通常、以下のようになります。

具体的には、MetaGPT はまず標準化された操作手順 (SOP) をプロンプトにエンコードして、複数のエージェントの共同プロセスを構造化します。その後、研究チームは出力をさらにモジュール化し、エージェントに人間の作業員と同等のドメイン専門知識を与えて出力を検証し、複合的なエラーを削減しました。

このように、MetaGPT はワークフローの形式で各エージェントに異なる役割を割り当て、複雑なマルチエージェントコラボレーション問題を効果的かつ一貫して分解できるフレームワークを確立します。

ソフトウェア開発において、システム アーキテクチャとインターフェイス設計は非常に重要なステップです。研究チームは、レコメンデーション エンジンの開発を例に、MetaGPT の「Architect Agent」によって自律的に生成されるシステム インターフェイス設計を実演しました。

MetaGPT を使用すると、インテリジェント エージェントは、単純なゲーム ソフトウェアの開発など、さまざまな複雑なタスクを完了できます。MetaGPT のタスク実行プロセスは、人間の開発者の SOP プロセスと 1 対 1 で対応できます。

MetaGPTは、ユーザーから入力された要件を受け取り、エージェントがプロダクトマネージャーとして需要と実現可能性の分析を行います。その後、アーキテクト、プロジェクトマネージャー、エンジニアとして行動するエージェントが順番にソフトウェア開発を完了します。最後に、ソフトウェアの包括的なテストを担当するインテリジェント エージェントがあります。プロセス全体は、実際の開発プロセスを非常によくシミュレートします。


MetaGPT が特定の開発タスクを完了する例を見てみましょう。ユーザーは「ブラックジャック ゲーム」を作成するという要件を入力するだけです。MetaGPT は、需要分析とタスク計画の後にゲーム コードを正常に書き込みます。

研究チームはプロジェクトのロードマップで次のように紹介しました。MetaGPT は短期的には中規模プロジェクト (コード 2,000 行程度) を自律的に実装するという目標を達成し、最終的には MetaGPT が自律的にトレーニング、微調整、最適化、適用、更新できるようになります。


現在、MetaGPT は「METAGPT: マルチエージェント コラボレーション フレームワークのためのメタ プログラミング」というタイトルの研究論文を公開しています。

論文アドレス: https://arxiv.org/pdf/2308.00352.pdf

興味のある読者は論文を読んで研究についてさらに詳しく知ることができます。

<<: 

>>:  GPT-4 の出力がなぜそれほどランダムなのか、深く考えたことはありますか?

ブログ    
ブログ    

推薦する

機械学習と従来のプログラミングの違いについて話す

[[264779]] AI と ML は誇張されすぎていて、if 文を書いたりプログラミングに関係す...

10 のカテゴリ、142 のデータソース、中国語 NLP データセットがオンライン検索で利用可能になりました

このオープンソース プロジェクトがあれば、適切な中国語 NLP データセットが見つからないと心配する...

GenAIの有効性に影響を与える主な問題

企業は GenAI をビジネスに適用しようとすると、多くの抵抗と予想外の変更管理の問題に直面します。...

このような秩序だったニューロンは、皆さんがよくご存知の再帰型ニューラル ネットワークに似ていますか?

本論文では、これまでの RNN モデル研究に基づいて、隠れ状態ニューロン間の更新頻度の順序を強制し、...

MoEとMambaが協力し、状態空間モデルを数百億のパラメータに拡張

状態空間モデル (SSM) は、最近注目を集めている Transformer の代替手段です。その利...

スーパー人工知能とは何ですか?

進化し続けるテクノロジーの世界において、魅力的であると同時に不安も抱かせる概念の出現が、スーパー人工...

写真にピクセルレベルの透かしをひっそり追加: AI による芸術作品の「盗作」を防ぐ方法が発見されました

オープンソースのAI画像生成モデル「Stable Diffusion」のリリース以来、デジタルアート...

...

...

...

自己強化型機械学習プロジェクト 10 選

機械学習プロジェクトは大きな発展の可能性を秘めています。最近、韓国の人気ドラマでもこの用語が使用され...

新しいAGVロボットナビゲーション技術!屋内ナビゲーション用の新しいロボット フレームワークが登場しました。

移動ロボットは、人間が設計したタスクを完了するために、現実世界の環境を効果的にナビゲートし、周囲の人...

機械知能に取って代わられない5つのスキル

「機械知能が人間のために行っている 5 つのこと」という記事では、機械が常に新しい奇跡を生み出してい...