新しいAGVロボットナビゲーション技術!屋内ナビゲーション用の新しいロボット フレームワークが登場しました。

新しいAGVロボットナビゲーション技術!屋内ナビゲーション用の新しいロボット フレームワークが登場しました。

移動ロボットは、人間が設計したタスクを完了するために、現実世界の環境を効果的にナビゲートし、周囲の人間やその他の障害物を回避できる必要があります。一般的に、ロボットは静止した物体を検出して回避するのは簡単ですが、人間を回避するには、人間の将来の動きを予測し、それに応じて計画を立てる必要があるため、より困難になる可能性があります。

カリフォルニア大学バークレー校の研究者らは最近、オフィス、自宅、美術館などの屋内環境で人間のためのロボットナビゲーション機能を強化できる新しいフレームワークを開発した。 arXiv で事前公開された論文で発表された彼らのモデルは、HumANav と呼ばれるフォトリアリスティックな画像のデータセットでトレーニングされました。

「我々は、学習ベースの知覚とモデルベースの最適制御を組み合わせた、人間の周囲を移動する新しい枠組みを提案する」と研究者らは論文に記している。

研究者らが開発した新しいフレームワークは LB-WayPtNav-DH と呼ばれ、認識、計画、制御モジュールという 3 つの主要コンポーネントで構成されています。認識モジュールは畳み込みニューラル ネットワーク (CNN) に基づいており、教師あり学習を使用してロボットの視覚入力をウェイポイント (つまり、次の望ましい状態) にマッピングするようにトレーニングされています。

CNN によってマップされたウェイポイントは、フレームワークの計画モジュールと制御モジュールに送られます。これら 2 つのモジュールを組み合わせることで、ロボットは周囲の障害物や人を回避しながら、安全に目標地点に移動できるようになります。

この図は、HumANav データセットに含まれる内容と、それが人を含む屋内環境のフォトリアリスティックなレンダリングをどのように可能にするかを示しています。画像出典: Tolani et al.

研究者らは、HumANavと呼ばれるデータセットに含まれる画像でCNNをトレーニングした。 HumANav には、SURREAL と呼ばれる別のデータセットから適応された、人間が動き回ることができるシミュレートされた建物環境のフォトリアリスティックなレンダリング画像が含まれています。これらの画像は、体型、性別、速度別に整理された、歩いている 6,000 人のテクスチャ付き人間メッシュを示しています。

「提案されたフレームワークは、将来の人間の動きを明示的に予測することなく、単眼RGB画像のみに基づいて人の動きを予測し、それに反応することを学習する」と研究者らは論文に記している。

研究者らは、シミュレーションと現実世界の両方で一連の実験を行い、LB-WayPtNav-DH を評価しました。実際の実験では、オープンソースソフトウェアを搭載した低価格の移動ロボット「Turtlebot 2」に適用しました。研究者らは、ロボットナビゲーションフレームワークは、シミュレートされた環境と現実世界の環境の両方で、目に見えない建物を効果的に回避できるほど十分に推測できると報告している。

画像クレジット: Varun Tolani MS

「我々の実験では、モデルベースの制御と学習を組み合わせると、純粋に学習ベースのアプローチに比べて、より優れた、よりデータ効率の高いナビゲーション動作につながることがわかった」と研究者らは論文に記している。

この新しいフレームワークは、最終的にはさまざまな移動ロボットに適用され、屋内環境でのナビゲーション機能を強化することができます。これまでのところ、彼らのアプローチはうまく機能することが証明されており、シミュレーションで開発されたポリシーを現実世界の設定に転送しています。

今後の研究では、研究者らはより複雑な環境や混雑した環境の画像でフレームワークを訓練することを計画している。さらに、編集したトレーニング データセットを拡張して、より多様な画像セットを含めたいと考えています。

<<:  AIは宇宙探査の商業化をどのように推進するのでしょうか?

>>:  AIインファナルアフェア!清華大学チームがAIセキュリティプラットフォームを立ち上げ、トップの顔認識アルゴリズムを欺き、脆弱性を修正

ブログ    
ブログ    
ブログ    

推薦する

手計算から数値モデルへの移行後、人工知能は産業生態系を変えるだろう

実際、人工知能の概念は 1950 年代にはすでに登場していました。科学者が最初のニューラル ネットワ...

Google の新しい AI が話題に!世界で最も長い単語を描くことができる

友達、この英語の単語が何だか知っていますか?超微細珪火山性肺炎。これは45文字からなる世界最長の単語...

sim2realでワールドモデルを使用すると、ロボットは視覚的な想像力とインタラクティブな実験を通じて学習します

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

人工知能アルゴリズムが構造生物学の難問を解決

新しい人工知能アルゴリズムは、RNA 分子の正しい 3 次元構造を間違ったものから選び出すことができ...

...

AI は「彼ら」による盗聴を防ぐことができますか?

次のような状況に遭遇したことがあるかもしれません:携帯電話でアプリを開くと、最初に表示されるのは数分...

人工知能の時代に優れた教師とはどのような人物であるべきでしょうか?

つい先日の教師の日、ジャック・マー氏は引退を発表し、正式にアリババの会長を辞任した。引退後、ジャック...

顔認識とは何ですか?あなたは顔認識技術を本当に理解していますか?

近年、人工知能の発展により、膨大なデータに基づく顔認識技術がさまざまな分野で広く利用されるようになり...

複数の機会が生まれており、虹彩認識技術の将来の発展は有望である

[[424491]]近年、人工知能ブームの影響を受けて、生体認証技術は急速に進歩し、市場の発展も好調...

機械学習のケーススタディ: クレジットカード詐欺検出

私は51CTOアカデミー講師の唐玉迪です。51CTOアカデミーの「4.20 ITリチャージフェスティ...

Googleは「ロボット工学の3原則」をシステムに導入:ロボットが人間に危害を加えることを厳しく防止

1月5日、有名なSF作家アイザック・アシモフが「ロボット工学三原則」を提唱しました。 Googleは...

ロビン・リー、馬化騰、ジャック・マーがAIについて語る: 世界は劇的に変化しています。心配するのではなく、責任を取るべきです。

[[333020]]ロビン・リー:業界の人々はAIに大きな可能性があることを知っており、悲観的な時...

マジック: メモリプーリングと分散 AI クラスターの最適化

[[429309]]分散機械学習が登場した理由は非常に単純です。一方では、トレーニングに利用できるデ...

AIが髪の毛に至るまで肖像画を生成!北京大学卒業生の最新研究が2.8千個の星を獲得

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...