機密コンピューティングが生成型AIの導入を確実にする方法

機密コンピューティングが生成型AIの導入を確実にする方法

生成 AI は、新しい製品、ビジネス、業界、さらには新しい経済に情報を提供することができます。しかし、従来の AI とは異なる点があり、それが危険につながる可能性もあります。そのユニークな創造力は、まったく新しい一連のセキュリティとプライバシーの問題を引き起こします。

企業は突然、トレーニング データに対する権利があるか、システム自体が将来作成するデータに対する権利を持っているか、システムの権利はどのように保護されているか、生成 AI を使用してモデル内のデータ プライバシーをどのように管理するかなど、多くの問題を考慮する必要があります。

これにより、多くの企業が慎重になるようになりました。セキュリティとプライバシーの明らかなギャップと、既存の暫定的なソリューションに頼ることへの躊躇が相まって、多くの企業がこれらのツールを全面的に禁止するようになりました。しかし、まだ希望はあります。

機密コンピューティングは、データを保護し、使用中のコードの整合性を確保するデータ セキュリティに対する新しいアプローチであり、大規模言語モデル (LLM) のより複雑で深刻なセキュリティ問題を解決するための答えです。セキュリティを損なうことなく、企業が生成 AI のパワーを活用できるよう支援します。説明する前に、まずは生成 AI が特に脆弱になる理由を見てみましょう。

生成 AI には、企業全体からのデータ、または知識が豊富なサブセットさえも、クエリ可能なインテリジェント モデルに組み込む力があり、いつでも新しいアイデアを提供できます。これは非常に魅力的ですが、企業が独自のデータの管理を維持し、絶えず変化する規制要件に準拠し続けることが難しくなります。

適切なデータ セキュリティと信頼管理がなければ、知識の集中とそれに続く生成結果により、生成 AI が意図せずして悪用、盗難、違法使用の武器として利用される可能性があります。

実際、機密のビジネス文書、顧客データ、ソース コード、その他の規制対象情報を LLM に提出する従業員が増えています。これらのモデルは部分的に新しい入力に基づいてトレーニングされるため、侵害が発生すると知的財産の重大な漏洩につながる可能性があります。

モデル自体が侵害された場合、企業が法的または契約上保護する義務があるすべてのものも侵害される可能性があります。最悪のシナリオでは、モデルとそのデータが盗まれ、競合他社や国家主体がすべてをコピーしてそのデータを盗むことが可能になり、大きなリスクが生じます。

さらに、企業は生成 AI に投資する際に、変化するプライバシー規制に対応する必要があります。業界全体において、データ要件に準拠する大きな責任と意欲が存在します。たとえば、ヘルスケアの分野では、AI を活用した個別化医療が患者の治療成果と全体的な効率性を向上させる大きな可能性を秘めています。しかし、医療提供者や研究者が規制遵守を維持しながら大量の機密性の高い患者データにアクセスして処理する必要性は、新たなジレンマを生み出しています。

これらの課題や必然的に生じるその他の課題に対処するには、生成 AI に新しいセキュリティ基盤が必要です。トレーニング データとモデルの保護は最優先事項である必要があります。データベース内のフィールドやフォームの行を暗号化するだけではもはや十分ではありません。

生成 AI の結果が重要な意思決定に使用されるシナリオでは、コードとデータの整合性、およびそれらが伝える信頼性の証拠は、規制遵守と潜在的な法的責任の管理にとって非常に重要です。計算全体とその実行状態を厳重に保護する方法が必要です。

機密生成AIの出現

機密コンピューティングは、一見解決が困難な問題を解決するためのシンプルでありながら非常に強力なアプローチを提供します。機密コンピューティングでは、データと IP はインフラストラクチャ所有者から完全に分離され、信頼できる CPU 上で実行される信頼できるアプリケーションのみがアクセスできます。実行中も暗号化によりデータのプライバシーが確保されます。

データのセキュリティとプライバシーはクラウド コンピューティングの固有の特性となり、悪意のある攻撃者がインフラストラクチャ データを侵害したとしても、IP とコードは完全に見えなくなります。これは生成 AI に最適であり、セキュリティ、プライバシー、攻撃のリスクを軽減します。

機密コンピューティングは、セキュリティのゲームチェンジャーとして注目を集めています。すべての主要なクラウド プロバイダーとチップ メーカーがこれに投資しており、クラウド コンピューティングに最も頑固に反対する人たちに力を与えているのと同じテクノロジーが、AI の安全な立ち上げを支援するソリューションになり得るのです。リーダーたちはこれを真剣に受け止め、その広範囲にわたる影響を理解しなければならない。

機密コンピューティングを使用すると、企業は生成 AI モデルが使用を意図したデータのみから学習し、他のデータからは学習しないことを保証できます。クラウド内の信頼できるソースのネットワーク全体にわたるプライベート データセットのトレーニングにより、完全な制御と安心が得られます。入力情報であろうと出力情報であろうと、すべての情報は企業の内部で完全に保護されます。

<<:  人工知能に対する期待と不安

>>:  マイクロソフトは、ユーザーが好みの商品を選択できるように、Bing および Edge ブラウザでのオンライン ショッピング サービスを拡張します。

推薦する

多くの場所で違法な顔認識を禁止する法律が制定されています。ビッグデータは個人にどのような悪影響を及ぼすでしょうか?

先月、個人情報保護のため、「ヘルメットをかぶって家を眺める」男性の短い動画がネット上で拡散され、ネッ...

待望のAI実装はどこで行き詰まっているのでしょうか?

AIはこれまで3つの発展の波を経験してきました。最初の2つの波は当時の技術環境やその他の理由により...

人工知能の時代では、科学技術分野の人材は職を失うのでしょうか?

インターネット技術の発展、ビッグデータや人工知能技術の進歩により、一部の伝統的な産業は革命的な変化を...

ニューラルネットワーク: 知っておくべきこと

ニューラル ネットワーク (NN) は、ほぼすべての分野で創造的な方法で問題を解決するのに役立ちます...

コンテナ内の AI と機械学習のワークロード: 知っておくべき 6 つのこと

[[414746]]企業はコンテナ内で人工知能や機械学習のワークロードを実行する準備ができているでし...

6つの新しいことに焦点を当て、新境地を開拓し、プロジェクトは変革を促進するための王様です。2020年中国(太原)人工知能会議が開催されました

2002年から2012年までの石炭の「黄金の10年」を経験した後、「古い工業基地」である山西省太原市...

SQL Server 2008 の 9 つのデータ マイニング アルゴリズム

1. 決定木アルゴリズム決定木は判断木とも呼ばれ、バイナリ ツリーやマルチ ブランチ ツリーに似たツ...

最先端の洞察 | ドローン配達が紛失しない理由はここにあります!

Frontier Insights の今号では、ドローンが商品を配送する際に進路を見つけやすくする...

これはオートエンコーダーとRNNの両方である。DeepMindの科学者は拡散モデルを8つの観点から分析する。

最も人気のある AI ペイント ツールの 1 つである Stable Diffusion を試したこ...

...

...

「バーチャル老黄」はあなたを騙しましたが、夏玉氷の手に触れることができますか?

昨年のNVIDIAのGTCで「Virtual Huang」はどのようにして作られたのでしょうか? ブ...

人工知能技術の発展の概要

人工知能は、コンピュータサイエンス業界のトップテクノロジーの一つとして、1956年にダートマス会議で...

データインテリジェンスのない人工知能は人工的である

良いロボット掃除機が動いているところを見たことがありますか?最初は楽しいのですが、掃除してほしかった...

AWS が ML プラットフォーム SageMaker の 9 つの主要なアップデートを発表

【51CTO.com クイック翻訳】 Amazon Web Services (AWS) は、クラウ...