ChatGPTが企業の収益向上にどのように役立つか

ChatGPTが企業の収益向上にどのように役立つか

ここ数か月、生成型人工知能(ChatGPT)に関するニュースがほぼ毎日のように報道されています。突然、AI が再び注目を集め、誰もがテクノロジーの波に乗ろうとしています。起業家は AI 企業を立ち上げたいと考え、経営者は AI をビジネスに応用したいと考え、投資家は AI に投資したいと考えています。

大規模言語モデルの提唱者として、私は生成型人工知能には大きな発展の可能性があると信じています。これらの大規模言語モデルは、個人の生産性の向上に役立つことが実証されています。たとえば、大規模な言語モデルによって生成されたコードを仕事に取り入れたり、GPT-4 を使用して記事を校正したりします。

生成 AI はビジネスにとって万能薬でしょうか?

現在最も差し迫った問題は、大規模な言語モデルの作成に携わっていない大企業や中小企業が、生成 AI の力を活用して収益を増やすにはどうすればよいか、ということです。

残念ながら、大規模言語モデルの場合、個人の生産性向上と商業的利益の間には大きな隔たりがあります。あらゆるビジネス ソフトウェア ソリューションの開発と同様に、実行すべきことはたくさんあります。 GPT-4 を使用してチャットボット ソリューションを作成する例を見てみましょう。チャットボットの作成には数か月かかり、数百万ドルの費用がかかる場合があります。

この記事では、生成 AI を商業的利益のために活用する際の課題と機会について概説し、テクノロジーの商業的価値を解き明かそうとしている起業家、企業幹部、投資家のために AI 環境をわかりやすく説明します。

AIに対する企業の期待

テクノロジーは、今日のビジネス運営に不可欠な要素です。企業が新しいテクノロジーを導入する場合、多くの場合、運用効率の向上とビジネス成果の向上が期待されます。企業は、AI の種類に関係なく、同じことを期待しています。

一方、ビジネスの成功はテクノロジーだけに依存するわけではありません。生成 AI や ChatGPT などのツールを導入しているかどうかに関係なく、経営がうまくいっている企業は今後も繁栄し続ける一方、経営がうまくいっていない企業は苦戦し続けるでしょう。

あらゆるビジネス ソフトウェア ソリューションを実装する場合と同様に、ビジネスにおける AI の適用を成功させるには、2 つの重要な要素が必要です。テクノロジが意図したとおりに具体的なビジネス価値を提供すること、そして企業が他のあらゆるビジネス オペレーションの管理と同様に AI を管理する方法を知っていることです。

生成型AIの誇大宣伝サイクルと幻滅

すべての新しいテクノロジーと同様に、生成 AI もガートナーが誇大宣伝サイクルと呼ぶサイクルを経ることになります。 ChatGPT などの人気アプリケーションが人工知能への一般の関心を呼び起こし、人工知能は予想されたピークにほぼ達しました。生成 AI は、関心が薄れ、実験が失敗し、投資がなくなるため、まもなく「幻滅の谷」に陥るでしょう。

「幻滅期」は、技術の未熟さや不適切なアプリケーションなど、さまざまな理由によって引き起こされる可能性がありますが、AI に対する 2 つの一般的な幻滅は、多くの起業家、企業幹部、投資家を失望させる可能性があります。こうした幻滅感を認識しないと、このテクノロジーをビジネスに適用する際の実際的な課題を過小評価したり、AI にタイムリーかつ慎重に投資する機会を逃したりすることになってしまいます。

生成AIが競争の場を平等にできるというのはよくある誤解だ

何百万人ものユーザーが生成 AI ツールを操作して、情報の取得からコードの作成まで、さまざまなタスクを実行しています。生成 AI によって、あらゆるビジネスで競争の場が平等になったようです。誰でも使用でき、英語が新しいプログラミング言語になりました。

これは特定のコンテンツ作成ユースケース(マーケティングコピーライティングなど)には当てはまるかもしれませんが、結局のところ、生成 AI は自然言語理解(NLU)と自然言語生成(NLG)に関するものです。テクノロジーの性質上、深いドメイン知識を必要とするタスクを処理するのは困難です。たとえば、ChatGPT は非常に不正確な医療記事を生成し、CFA 試験に不合格になりました。

業界の専門家は深い知識を持っていますが、AI や IT テクノロジーに精通しているわけではなく、生成 AI の仕組みを理解しているわけでもない場合があります。たとえば、ChatGPT に効果的に指示して望ましい結果を得る方法がわからない場合があり、人工知能 API を使用してソリューションを生成することもできない可能性があります。

人工知能の分野における急速な発展と熾烈な競争により、大規模言語モデルもますますコモディティ化しています。大規模な言語モデルをサポートするビジネス ソリューションの競争上の優位性は、価値の高い独自のデータの所有か、ドメイン固有の専門知識の所有のいずれかにあるはずです。

企業の従業員は、そのような特定の分野でスキルと専門知識を蓄積している可能性が高くなります。これらの利点にもかかわらず、生成 AI の急速な導入を妨げるレガシー プロセスが存在する可能性もあります。これらの人材は最初からテクノロジーの利点を最大限に活用できますが、重要なドメイン知識を獲得するためにビジネスを迅速に立ち上げる必要があります。どちらも本質的に同じ根本的な課題に直面しています。

重要な課題は、ビジネス ドメインの専門家が、そのドメイン データや専門知識を活用しながら、専門家になる必要なく AI をトレーニングおよび監督できるようにすることです。

生成AIの導入を成功させるための重要な考慮事項

生成 AI は高度な言語理解と生成技術を備えていますが、すべてを実行できるわけではありません。このテクノロジーを活用しつつ、その欠点を避けることが重要です。ここでは、生成 AI への投資を検討している起業家、企業幹部、投資家向けに強調されている重要な技術的考慮事項をいくつか紹介します。

  • AI の専門知識: 生成 AI は完璧には程遠いです。組織が生成 AI ソリューションの構築を決定した場合、AI の内部の仕組みを真に理解し、必要に応じて改善できる専門家を確保する必要があります。外部の企業と協力してソリューションを作成することに決めた場合は、その企業が深い専門知識を持ち、AI を最大限に活用できるよう支援できることを確認する必要があります。
  • ソフトウェア エンジニアリングの専門知識: 生成 AI ソリューションの構築は、他のソフトウェア ソリューションの構築と同様に、専用のエンジニアリング作業が必要です。組織が社内ソリューションを構築することを決定した場合、これらのソリューションを構築、維持、更新するためのソフトウェア エンジニアリングの才能が必要になります。外部の企業と協力することに決めた場合は、ソリューションの構築、保守、更新を容易にするノーコード プラットフォームの提供など、面倒な作業を外部の企業が行ってくれることを確認する必要があります。
  • 業界ドメインの専門知識: 生成 AI ソリューションを構築するには、多くの場合、業界ドメインの知識を吸収し、そのドメイン知識を使用してテクノロジーをカスタマイズする必要があります。生成 AI ソリューションを社内で構築する場合でも、外部のパートナーと連携する場合でも、提供できるドメイン専門知識があり、その知識をソリューションでどのように使用するかを知っていることを確認してください。企業 (またはそのソリューション プロバイダー) にとって、非 IT 専門家や他の業界の専門家がコーディングや追加の IT サポートを必要とせずに、生成 AI ソリューションを簡単に取り込み、カスタマイズし、維持できるようにすることが重要です。

結論

生成 AI がビジネス環境を変革し続ける中、テクノロジーに対する偏見のない見方が必要です。次の点を覚えておくことが重要です。

  • 生成 AI は主に言語関連の問題を解決しますが、すべての問題を解決できるわけではありません。
  • 成功するビジネス ソリューションを実装するのは、見た目以上に大変なことです。
  • 生成 AI はすべての人に平等に利益をもたらすわけではありません。テクノロジーの力をより迅速かつ安全に活用するために、AI の専門知識と IT スキルを持つ人材を採用または提携します。

起業家、経営幹部、投資家が急速に進化する AI の世界に参入するにあたり、関連する課題と機会、このテクノロジーを活用する上で優位に立つのは誰か、ROI を最大化するために AI に迅速に決定して慎重に投資する方法などを理解することが重要です。

<<:  70年前、彼は試験を避けたかったが、インターネット全体に影響を与えた

>>:  大規模な言語モデルはデータアシスタントとして機能し、浙江大学のデータコパイロットはデータを効率的に呼び出し、処理し、視覚化します。

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

OpenAIを批判した後、ルカン氏はこう答えた。「意識は単なる幻想だと思う」

ヤン・ルカンは演説中に、フランス革命の有名な絵画「民衆を導く自由の女神」を再生し、「革命は監視されな...

アダムはまた「引退」するのでしょうか?イェール大学のチームがAdaBeliefを提案

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

機器の検査に手作業が必要な人はいますか? AIの活用

著者 | Tu Chengyeレビュー | Chonglou前の記事:「人材が足りないのではなく、A...

「無人時代」が来ます。準備はできていますか?

DJIのドローン、JDの無人倉庫、アリババの無人スーパー、百度の無人自動車など、数年前からすでに台...

リモートワークにおけるAIの活用事例

世界中の組織がリモートワークに移行する必要に迫られ、業務を維持するために技術的な対策が必要になりまし...

機械学習の基本概念30選(手描きイラスト)

01 空間表現深遠な機械学習理論を学ぶ前に、まず機械学習の最も基本的な概念のいくつかを紹介しましょ...

爆発的なソラの背後にある技術、拡散モデルの最新の開発をレビューする記事

機械が人間の想像力を持てるようにするために、深層生成モデルは大きな進歩を遂げました。これらのモデルは...

...

BigDL-LLMを使用して、数百億のパラメータを持つLLM推論を即座に加速します。

私たちは、顧客サービス、仮想アシスタント、コンテンツ作成、プログラミング支援などのさまざまなアプリケ...

スマート製造とAIが環境にどのように役立つか

製造業からの温室効果ガス排出を削減する方法は複数あります。 製造業におけるデジタルデータの使用による...

...

人工知能は大きな進歩を遂げ、意識の認識が実現した

参加者が50の文章を話している間に神経活動が収集されました。機械学習アルゴリズムは、収集されたデータ...

ガートナーは、人間と機械の境界を曖昧にする5つの新たな技術トレンドを明らかにした。

世界有数の情報技術調査・コンサルティング会社であるガートナーが発表した「2018年新興技術ハイプサイ...

空飛ぶ脳?ヒントン氏のツイートは白熱した議論を引き起こした。ニューラルネットワークは鳥が飛ぶための「羽」なのか?

[[407838]]ヒントン氏はツイッターでちょっとした議論を始めた。「ニューラルネットワークを設...

AIやIoT技術を活用した企業が職場復帰する際に考慮すべきこと

新型コロナウイルス感染症のパンデミックにより、社会の多くの分野でデジタル変革が加速し、人工知能ツール...