PromptAppGPT メジャーアップデート! AIアシスタントの開発と運用のハードルはゼロ:AutoGPTはわずか数十行のコードで実装可能

PromptAppGPT メジャーアップデート! AIアシスタントの開発と運用のハードルはゼロ:AutoGPTはわずか数十行のコードで実装可能

最近、初めて自社開発した完全にオープンソースの自然言語ローコード GPT アプリケーション迅速開発フレームワークである PromptAppGPT が重要なアップデートを受けました。

フレームワークの紹介については、以前の記事「Really Low Code!」を参照してください。 PromptAppGPT は、ChatGPT に基づく最初の自然言語開発フレームワークです。完全に自動化されたコンパイル、操作、およびインターフェース生成を実現します。

プロジェクトウェブサイト: https://promptappgpt.wangzhishi.net/

プロジェクトコード: https://github.com/mleoking/PromptAppGPT

更新された PromptAppGPT フレームワークには、Web 検索、画像検索、Web クロール、JavaScript コード実行など、複数の重要な実行コンポーネントに対する組み込みサポートが追加されています。

新しい実行コンポーネントの追加と他のメカニズムの最適化により、PromptAppGPT はわずか数十行のローコードで AI 自動アシスタント AutoGPT を実装できるようになりました。

アップデート後、PromptAppGPT は AI 全自動アシスタントの開発と操作のハードルを最低レベルまで下げました。誰でも自然言語で開発でき、依存コンポーネントをインストールすることなく、URL を直接開いてクリックするだけで実行できます。

このアップデートで追加された My AutoGPT プログラムは、PromptAppGPT をベースにした AI 全自動アシスタント アプリの開発例です。

PromptAppGPT に基づく私の AutoGPT コード

--- author: Leo name: My AutoGPT description: Use gpt and executors to autonomously achieve whatever goal you set. gptRound: multiple failedRetries: 2 autoRun: true sysTask: - executor: gpt prompt: | Constraints: 1. If you are unsure how you previously did something or want to recall past events, thinking about similar events will help you remember. 2. No user assistance 3. Exclusively use the commands listed in double quotes eg "command name" Commands: 1. Webpage Search: "doSearchWeb", args: "query": "<keywords_to_search>" 2. Image Search: "doSearchImage", args: "query": "<keywords_to_search>" 3. Task Complete: "doCompleteTask", args: "output": "<task_output>" Resources: 1. Internet access for searches and information gathering. 2. GPT-3.5 powered Agents for delegation of simple tasks. Performance Evaluation: 1. Continuously review and analyze your actions to ensure you are performing to the best of your abilities. 2. Constructively self-criticize your big-picture behavior constantly. 3. Reflect on past decisions and strategies to refine your approach. 4. Every command has a cost, so be smart and efficient. Aim to complete tasks in the least number of steps. You should only respond in JSON format as described below Response Format: { "thoughts": { "text": "thought", "reasoning": "reasoning", "plan": "- short bulleted\n- list that conveys\n- long-term plan", "criticism": "constructive self-criticism", "speak": "thoughts summary to say to user" }, "command": { "name": "command name", "args": { "arg name": "value" } } } userTask: - trigger: doSearchWeb executor: bingWeb prompt: | query: $e{"query": "(.*)"} limit: 2 outputer: $e{RawInput} doGptNext - trigger: doSearchImage executor: bingImage prompt: | query: $e{"query": "(.*)"} limit: 2 outputer: $e{RawInput} doGptNext - trigger: doGptNext executor: gpt prompt: Determine which next command to use, and respond using the format specified above. - trigger: doCompleteTask executor: log prompt: | $i{Task Complete:@textarea=$e{"output": "(.*)"}} - executor: gpt prompt: | $i{My Objectives:@textarea=Objectives: 1. Recommend the best smartphone for business professionals in 2023. 2. Explain why the smartphone is recommended and show the smartphone's image.}

コードでは、sysTask 部分で、アシスタントが準拠する必要がある制約、実行できるコマンド、使用できるリソース、パフォーマンス評価方法、出力内容と形式の仕様を記述します。

userTask 部分は、アシスタントが実行するために必要な 5 つのタスクのトリガー条件 (トリガー)、実行者 (executor)、実行入力 (プロンプト) を構成します。

私のAutoGPT操作プロセス

まず、アシスタントに達成させたい目標を入力します。

1. 2023 年にビジネス プロフェッショナルに最適なスマートフォンを推奨します。

2023年のビジネスマンに最適なスマートフォン

2. スマートフォンが推奨される理由を説明し、スマートフォンの画像を表示します。

スマートフォンを推奨する理由を説明し、スマートフォンの写真を見せてください

次に、「実行」をクリックします。この時点で、プログラムはターゲットの分解と完了のプロセスを完全に自動的に開始します。

最初のステップは、GPT に電話して決定を下すことですが、そのためには、2023 年のビジネスマンに最適なスマートフォンのリストを Web 検索で見つける必要があります。

2 番目のステップは、bingWeb を呼び出して 2 つの Web ページを検索し、2023 年のビジネスマンに最適なスマートフォン候補 (iPhone 14 Pro Max、Samsung Galaxy S22 Ultra、Google Pixel 7 Pro、Samsung Galaxy Z Fold 4、Oppo Find X5 Pro) を見つけることです。

3 番目のステップは、GPT を呼び出して決定を下すことです。次のステップは、上記で取得した 2 つの Web ページ (TechRepublic と TechRadar) の意見の類似点と相違点をさらに検索することです。

4 番目のステップは、bingWeb を呼び出して、2 つのレポート間の類似点と相違点に関する情報を取得することです。

5 番目のステップは、GPT を呼び出して決定を下すことです。上記の手順を通じて、GPT は iPhone 14 Pro Max が 2023 年のビジネスマンに最適なスマートフォンであると判断し、次に GPT は次のステップで画像検索を呼び出してこの電話の写真を取得する必要があると判断しました。

ステップ 6. bingImage を呼び出して、iPhone 14 Pro Max の写真を 2 枚検索します。

7 番目のステップでは、GPT を呼び出して決定を行い、2 つの画像から最初に見栄えの良い濃い青色の画像を選択し、次の決定でタスクを完了します (doCompleteTask)。

ステップ 8. タスクが完了しました。iPhone 14 Pro Max の電話が推奨され、推奨の理由と電話の画像リンクが提供されました。

PromptAppGPT に基づく My AutoGPT アプリケーションは、大規模な言語モデルがターゲットを自動的に分解し、決定を下し、ツールを使用し、最終結果を統合する能力を実証していることがわかりました。

更新された PromptAppGPT には、より多くのプラグインとメカニズムが付属しており、よりインテリジェントな大規模言語モデル アプリケーションのローコード開発をサポートします。

著者について

Zhang Changwang 氏は、CCF 理論計算機科学技術委員会の上級研究者および委員です。 彼は第37回AAAI人工知能会議(AAAI-23)のシニアプログラム委員会(SPC)委員を務めました。

彼は2011年にロンドン大学ユニバーシティ・カレッジ(UCL)で修士号を、2015年に博士号を取得しました。 2016年から2017年までアリババでLBSデータマイニングに従事し、2018年から2022年までテンセントで広告推奨とユーザープロファイリングに従事しました。

現在の研究方向は、情報検索(検索促進)、自然言語処理、ビッグデータマイニングの研究と応用です。

<<:  11人のLLMが連携することで、パフォーマンスが爆発的に向上します。 AI2とUSCが共同でLLM-Blender統合学習フレームワークをオープンソース化:まずソートしてからマージ

>>:  スタンフォード大学がトランスフォーマー代替モデルを訓練:1億7000万のパラメータ、バイアスを除去可能、制御可能、解釈可能

推薦する

...

AIの時代において、従来の検索エンジンはどこへ向かうのでしょうか?

こんにちは、皆さん。私は Luga です。今日は、人工知能 (AI) エコシステムに関連するテクノロ...

...

トップレベルの人工知能チームを構築するにはどうすればよいでしょうか?

市場には優れた AI ソフトウェア ツールが数多く存在しますが、プロジェクトを実装する際には強力なチ...

アリババ初のAIチップ「Pingtou Ge」が発売! NVIDIA P4 より 46 倍高速で、推論パフォーマンスの世界新記録を樹立

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

Java プログラミング スキル - データ構造とアルゴリズム「フィボナッチ検索」

[[398011]]基本的な紹介フィボナッチとは、線分を 2 つの部分に分割し、一方の長さと全体の...

フロンティアモデルフォーラムは責任あるAIの創造を目指している

政府や社会からの監視が強まる中、人工知能(AI)の責任ある開発を促進し、業界標準を確立することを目的...

...

量子機械学習モデルを構築するための Google の新しいフレームワーク、TensorFlow Quantum を探索する

[[319936]] [51CTO.com クイック翻訳] 量子コンピューティングと人工知能 (AI...

AIプロジェクトでKubernetesを使用する方法

AI プロジェクトで Kubernetes を使用する利点は何でしょうか? Kubernetes が...

...

K-means クラスタリングがあるのに、なぜ DBSCAN クラスタリング アルゴリズムが必要なのでしょうか?

クラスタリング分析は、データ ポイントを複数の特定のクラスターまたはグループに分割する教師なし学習手...