ニューラルネットワークのトレーニングでは、エポック、バッチサイズ、反復の違いがわかりません

ニューラルネットワークのトレーニングでは、エポック、バッチサイズ、反復の違いがわかりません

[[204925]]

きっと、コンピューターの画面を見て頭を悩ませ、「なぜコードでこの 3 つの用語を使用しているのだろう。これらの用語の違いは何だろう」と疑問に思ったことがあるでしょう。なぜなら、これら 3 つの用語はすべて非常によく似ているからです。

これらの用語の違いを理解するには、勾配降下法など、機械学習に関するいくつかの用語を知っておく必要があります。

勾配降下法の意味を簡単にまとめると次のようになります。

勾配降下法

これは、最適な結果 (曲線の最小値) を見つけるために機械学習で使用される反復最適化アルゴリズムです。

勾配とは、傾斜または斜面の傾きを意味します。

減少の意味はコスト関数の減少です。

このアルゴリズムは反復的であるため、最適な結果を得るには複数回使用する必要があります。勾配降下法の反復的な性質により、適合度の低いグラフを進化させて、データに最も適合したものを得ることができます。

勾配降下法には学習率と呼ばれるパラメータがあります。上の図の左に示すように、学習率は最初は大きいため、降下ステップのサイズは大きくなります。ポイントが減少するにつれて、学習率はますます小さくなり、したがって降下ステップ サイズも小さくなります。同時に、コスト関数も減少します。つまり、コストが減少します。これは損失関数または損失とも呼ばれますが、どちらも同じです。 (損失/コスト削減は良いことです)

エポック、バッチ サイズ、反復などの用語を使用する必要があるのは、データが膨大な場合 (機械学習ではほとんどの場合に当てはまります) のみであり、その場合、データを一度にすべてコンピューターに取り込むことは不可能です。したがって、この問題を解決するには、データを小さなチャンクに分割し、それらを 1 つずつコンピューターに渡し、各ステップの最後にニューラル ネットワークの重みを更新して、指定されたデータに適合させる必要があります。

エポック

完全なデータセットがニューラル ネットワークを 1 回通過して戻ってくるプロセスをエポックと呼びます。

ただし、エポックがコンピューターで処理するには大きすぎる場合は、エポックを小さなチャンクに分割する必要があります。

複数のエポックを使用するのはなぜですか?

最初は奇妙に聞こえるかもしれませんが、完全なデータセットをニューラル ネットワークに 1 回渡すだけでは不十分で、同じニューラル ネットワークに完全なデータセットを複数回渡す必要があります。ただし、有限のデータセットを扱っており、学習プロセスとグラフを最適化するために反復プロセスである勾配降下法を使用していることを忘れないでください。したがって、重みを 1 回だけ更新したり、1 つのエポックを使用したりするだけでは不十分です。


エポック数が増加すると、ニューラル ネットワーク内の重みの更新回数も増加し、曲線はアンダーフィットからオーバーフィットへと変化します。

では、いくつのエポックが適切なのでしょうか?

残念ながら、この質問に対する正しい答えはありません。答えはデータ セットによって異なります。ただし、データの多様性は適切なエポック数に影響します。たとえば、黒猫だけのデータセットと、さまざまな色の猫のデータセットがあります。

バッチサイズ

バッチ内のサンプルの合計数。注意: バッチ サイズとバッチ数は異なります。

BATCHとは何ですか?

データをニューラル ネットワークに挿入できない場合は、データ セットを複数のバッチに分割する必要があります。

この記事を「はじめに」、「勾配降下法」、「エポック」、「バッチ サイズ」、「反復」などのいくつかの部分に分割して、記事を読みやすく理解しやすくします。

反復

反復を理解するために必要なのは、九九表か電卓だけです。反復は、バッチがエポックを完了するために必要な回数です。覚えておいてください: 1 つのエポックでは、バッチの数と反復回数は同じです。

たとえば、2000 個のトレーニング サンプルを含むデータ セットの場合。 2000 個のサンプルをサイズ 500 のバッチに分割すると、1 エポックを完了するには 4 回の反復が必要になります。

<<:  cnBeta は、開発者が AI アプリケーションを構築するのに役立つ 3 つの新しい機械学習ツールをリリースしました。

>>:  人工知能が試験重視教育の華容道を阻む

ブログ    
ブログ    

推薦する

Pytorch Geometric を使用したリンク予測コードの例

PyTorch Geometric (PyG) は、グラフ ニューラル ネットワーク モデルを構築し...

ハードウェアとコードを分離し、APIを安定化したPyTorch Lightning 1.0.0が正式リリース

Keras と PyTorch はどちらも初心者にとても優しいディープラーニング フレームワークです...

人工知能シナリオにおける HBase の使用

近年、人工知能は、特にビッグデータと組み合わせて使用​​されることで、ますます人気が高まっています。...

「中国版ダヴィンチ」ロボットが人気!ブドウの皮を縫うだけでなく、このような創造的な作業もあります

ブドウを縫うことができる DIY ロボットアームを作りますか? [[428703]]最近、有名な「ハ...

企業は生成 AI のリスクをどのように管理できるでしょうか?

生成 AI の導入は昨年急増しました。このテクノロジーはイノベーションと生産性の向上を約束する一方で...

アルゴリズミア:人工知能は2021年に主流になる

1月6日、海外メディアの報道によると、新型コロナウイルス肺炎流行の影響により、企業内での人工知能技術...

大型モデルは集団的に制御不能です!南洋理工大学の新たな攻撃は主流のAIすべてに影響を与える

業界最先端の大型モデルが一斉に「脱獄」! GPT-4 だけでなく、通常はそれほど間違いを起こさない ...

ChatGPT「コードインタープリター」が正式リリースされました! 30秒で写真を動画に変え、口を動かしてショーを作りましょう

家族よ、ついに来たぞ!先ほど、ChatGPT「コードインタープリター」ベータ版がすべてのPlusユー...

...

データ サイエンティストに Kubernetes クラスターの管理を任せるのはやめましょう…

[[317899]]生産機械学習には組織的な問題があります。この問題は、生産機械学習の比較的新しい...

ガートナー:持続可能性とデジタル主権がパブリッククラウドベースのAIサービスを選択する際の最重要基準となる

ガートナーは、2027 年までに、生成型人工知能 (生成型 AI) を導入する企業の 70% が、持...

大企業の面接官によく聞かれるアルゴリズム図:スタック内の最小値を見つける方法がまだわかりませんか?

今日のインタビューの質問はこれです...トピックスタックデータ構造を定義します。この型でスタックの最...

...

...

「AI」の限界:人工知能は未来を変えるが、まだ解決されていない問題がある

[[348196]]画像ソース: unsplash人工知能はこの時代の合言葉であり、技術専門家、学...