AIテキスト翻訳システムの品質が44%向上し、500億以上のパラメータを使用して200の言語を翻訳

AIテキスト翻訳システムの品質が44%向上し、500億以上のパラメータを使用して200の言語を翻訳

Meta Platforms は本日、Meta が社内開発した、200 言語のテキストを翻訳できる人工知能システムである NLLB-200 のシステム コードをオープンソース化しました。

Meta 社は、研究者が NLLB-200 をソフトウェア プロジェクトに簡単に適用できるように設計された一連のツールも発表しました。

Metaによれば、NLLB-200が理解できる200の言語の多くは、他のAI翻訳システムでは十分にサポートされていないとのこと。現在、最も広く使用されている翻訳ツールは 25 未満のアフリカ言語をサポートしていますが、NLLB-200 は最大 55 のアフリカ言語をサポートしています。

Meta 氏は、翻訳精度も NLLB-200 が他のツールより優れている点の 1 つであると述べました。 Meta は、機械翻訳されたテキストの品質を測定するために使用されるアルゴリズムである BLEU 評価システムを精度基準として使用します。 Meta は、NLLB-200 の BLEU スコアが以前の平均より 44% 高いと主張しています。

「私たちは、200種類の言語間で翻訳できる自社開発のAIモデルをオープンソース化したばかりです。その多くは、現在の翻訳システムではサポートされていません」とMetaのCEO、マーク・ザッカーバーグ氏は述べた。「私たちはこのプロジェクトを『No Language Left Behind(取り残された言語はない)』と呼んでいます。私たちが使用しているAIモデリング技術は、世界中の何十億もの人々が話す言語の高品質な翻訳を実現しています。」

NLLB-200 には、AI システムがデータを処理する方法を決定する構成である 500 億を超えるパラメーターがあります。 AI システムのパラメータが多ければ多いほど、その精度は高くなります。

NLLB-200 の多数のパラメータは、200 の言語を高精度でサポートできる唯一の要因ではありません。NLLB-200 システムは、Meta のエンジニアによって開発された他の多くの AI イノベーションも活用しています。

Meta は、社内で開発された LASER ツールキットを使用して機械学習関連の研究をサポートしています。このツールキットにより、研究者はニューラルネットワークをトレーニングして、ある言語で特定のタスクを実行し、比較的簡単に他の言語に適応させることができるため、翻訳に役立ちます。 Meta は、LASER の改良バージョンである LASER3 をサポートするために、新しい NLLB-200 システムを開発しました。

LASER のオリジナル バージョンには、テキストを AI システムが理解できる数学的表現に変換する特殊なコンポーネントである LSTM と呼ばれるニューラル ネットワークが含まれていました。この数学的表現は、より正確な翻訳結果を生成するのに役立ちます。 LASER3 では、Meta は LSTM ニューラル ネットワークを、同じタスクをより効率的に実行できる高度な自然言語処理モデルである Transformer に置き換えました。

Meta は、トレーニング データの収集に使用されるシステムのアップグレードや AI トレーニング ワークフローの変更など、他のいくつかの方法を使用して NLLB-200 の機能を改善しました。

Meta は、自社開発の Research SuperCluster スーパーコンピューター (写真) を使用して NLLB-200 をトレーニングしました。 Meta が 1 月に Research SuperCluster を初めて発表したとき、同社はこのシステムには 6,080 個の Nvidia の最新の A100 データセンター GPU が搭載されており、最終的には 16,000 個の GPU にアップグレードされると述べていました。

Meta は NLLB-200 を使用して Facebook、Instagram、その他のプラットフォームでより優れた自動翻訳機能を提供する予定であり、システムが 1 日あたり 250 億件以上の翻訳をサポートすることを期待しています。

Meta は社内で NLLB-200 の普及に努めるとともに、他の組織が独自のソフトウェア プロジェクトにこのシステムを適用できるよう支援する予定です。

Meta には、NLLB-200 に加えて、AI のトレーニングに使用できるオープンソース コードと、翻訳の精度を評価するための FLORES-200 と呼ばれるデータセットがあります。 Meta は、非営利団体が NLLB-200 を導入できるよう最大 20 万ドルの資金を提供します。さらに、Meta は Wikimedia Foundation と協力して、Wikipedia の記事に自動翻訳技術を適用します。

<<:  大規模なモデルをトレーニングするのは本当に難しいのでしょうか?事前トレーニング済みで使いやすく、非常に効率的な「Li Bai」モデル ライブラリが登場しました。

>>:  銀行における会話型 AI – 企業が犯しがちな 3 つの間違い

ブログ    

推薦する

人工知能は諸刃の剣です。EUは利益を促進し、害を避けるための規制を導入しました。

近年、交通と環境に対する要求が継続的に高まっており、わが国の新エネルギー自動車は急速な発展を遂げてい...

ドローンの脅威と脆弱性評価に関する簡単な説明

[[411760]] Vol.1 背景ドローンの開発は大きな技術的進歩です。ドローンは、娯楽や商業用...

RPAを成功させる方法

ロボティック プロセス オートメーション (RPA) は、ルールベースのプロセスを使用して、人間より...

中国チームが最優秀論文賞と最優秀システム論文賞を受賞し、CoRLの受賞論文が発表されました。

CoRL は 2017 年に初めて開催されて以来、ロボット工学と機械学習の交差点における世界トップ...

今後5年間のAI技術の発展と影響を展望する

人工知能 (AI) テクノロジーは、ビジネス プロセスの合理化、運用コストの削減、面倒なタスクの自動...

シャドーAIの潜在的な脅威に対処するための4つのヒント

AI ツールの導入はほとんどの組織がセキュリティを確保できるよりも速いペースで進んでいるため、シャド...

...

Google は最新の NLP モデルをオープンソース化しました。このモデルは「罪と罰」の全巻を処理できます。

Transformer は、近年 NLP 分野で注目されているモデルの 1 つです。 2017年、...

びっくり!外国人が人間の皮膚マスクでiPhone Xに挑戦:予想外の結果

iPhone Xのレビュー解禁に伴い、海外の主要主流メディアやテクノロジーブログが関連するテストや体...

スマートシティにおける低リスクの AI 応用分野 3 つ

スマート シティでは、一部の AI 駆動型システムは統合にコストがかかったり、実装前に複数の規制に準...

ビッグデータ、人工知能、そして法曹界の未来

私は人工知能と法曹界の将来について数多くの講演を行ってきました。過去2年間、AlphaGo Zero...

ネットユーザーの83%を騙した!画像生成の頂点、DALL-E 2 は実際にチューリングテストに合格したのか?

数日前、休暇中だったネットユーザーが「DALL-E 2」にアクセスできたことを知った。 2秒間考えた...

GPU 価格の急激な下落はチップ不足が終わった兆候でしょうか?

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

広州には AI があり、Huawei Ascend Academy は本格的に始動しています。

[[335135]] 2020年7月18日午後、広州ロイヤルパレスホテルでHuawei DevRu...