自動化によって、採用担当者が大規模な適格な人材を特定する方法

自動化によって、採用担当者が大規模な適格な人材を特定する方法

AI ベースの自動化ツールは、候補者データを収集して処理し、候補者の調達、スクリーニング、多様性、その他の HR 機能を高速化および合理化できます。

退職の波が収まる気配がないため、採用担当者は有能な人材で従業員を補充するためにあらゆる支援を求めている。人材管理市場(人材獲得ソフトウェアおよびサービスを含む)は現在、約 200 億ドルの価値があります。

採用・人事業務のデジタル化・自動化の進展を背景に、2028年まで年率12%以上の成長が見込まれています。

世界中で、企業は最も優秀で、最も才能があり、最も多様性のある労働力の創出と維持を重視しています。予想通り、人工知能、機械学習、予測モデリングの進歩により、大企業だけでなく中小企業も、業界の根本的な変化を乗り越えながら、採用を自動化する前例のない機会を得ています。リモートワークやハイブリッドワークを含む職場の実践。

実際、ある調査では、調査対象となった採用担当者の 5 人中 4 人が、候補者の採用プロセスを完全に自動化できれば効率が向上すると考えていました。彼らは、より多くのデータがあれば、候補者の資格を判断し、候補者プールを評価し、アウトリーチを改善し、採用ワークフローを改善するのに役立つことに同意しました。それにもかかわらず、採用担当者の 42% には、データを洞察に変えるどころか、詳細な分析を実施または実行するためのデータや時間がありません。

採用自動化とは何ですか?また、どのように役立ちますか?

人事または人材管理機能は、採用から始まります。求人枠が埋まらないまま一日が経つごとに、企業は利益と生産性の面で損失を被ります。スマートな AI ベースのツールは、候補者に関する関連データを収集し、採用担当者が利用できるようにして、正確に処理することで、候補者の調達、スクリーニング、多様性と包括性、面接、応募者追跡などの複数のサブプロセスを高速化し、合理化することができます。

「何百もの履歴書を整理し、取締役一人ひとりの職務内容を投稿する時代は終わった」と、少数派出身の候補者を紹介する人材フィードソリューションを提供するJoonkoのCEO、イリット・ラズ氏は語った。 「何らかの自動化や人事テクノロジーを導入していなければ、特に採用に関しては常に競合他社より一歩遅れをとることになる」と彼は語った。

採用自動化は、SaaS (Software as a Service) アプリケーションとして提供され、人工知能の活用が進むテクノロジーであり、企業はこれを活用して従業員のあらゆる側面を管理できます。その主な目的は次のとおりです。

  • 採用業務とワークフローを自動化
  • 採用コストを削減します。
  • HR スタッフと採用担当者の生産性を向上します。
  • 空いているポジションをより早く埋めます。
  • 公平な採用。
  • 企業全体の人材状況を改善します。

一般的な AI ベースの採用自動化テクノロジーは、採用担当者がこれらの目標を達成するのにどのように役立ちますか? AI が重要な役割を果たすことができるさまざまな機能は次のとおりです。

  • 求人広告: 採用ソフトウェアは、求人掲示板やその他の Web サイトで自動的に広告を購入できます。プログラマティック広告とブランドコンテンツを使用して、対象となる候補者が頻繁に訪れる業界固有の Web サイトに求人情報を掲載します。また、採用担当者が求人広告予算を最適化し、採用コストを削減するのにも役立ちます。
  • アプリケーション追跡システム (ATS): ATS は、企業の採用および雇用サイクル全体を自動化するソフトウェアです。求人情報を管理し、履歴書を並べ替え、応募をフィルタリングし、空いているポジションに最適な候補者を特定するための一元的な場所を提供します。これにより、人事マネージャーは整理された状態を維持し、候補者が採用プロセスのどの段階にいるのかに関する詳細な情報に簡単にアクセスできます。
  • 履歴書の審査: 履歴書を手動で審査することは、採用活動の中で最も時間のかかる作業の 1 つです。 AI ベースのソフトウェアは、求人情報に基づいて職務要件を「学習して理解」し、応募者が使用したキーワード、用語、フレーズに基づいて履歴書をフィルタリングします。
  • 候補者の事前審査: インテリジェントなアルゴリズムは、候補者のスキル、経験、その他の特性を以前の採用担当者や投稿された職務と比較して評価することで、適切な候補者を特定できます。また、採用プロセスが進むにつれて、候補者に順位を付けたり、スコアを付けたりすることもできます。 AI ベースのチャットボットは、候補者と会話を開始することで基本情報を収集し、候補者についてより詳しく知ることができます。アルゴリズムは、LinkedIn、Twitter、Facebook などのソーシャル プロフィールや、アクティブに活動している業界固有のプラットフォーム (開発者向けの StackOverflow など) をスキャンして、応募者の性格、知識、能力、資格をより深く理解することもあります。

採用の自動化がうまくいかないのはいつでしょうか?

採用自動化ソフトウェアは進歩していますが、採用の課題を解決する万能薬ではありません。面倒な採用プロセスを処理できるテクノロジーはありません。データの過負荷は重要な問題です。今日、採用担当者は(応募者や職務に関する)膨大なデータを抱えているため、それを分析して適切な判断を下す時間もスキルもありません。多くの場合、このデータにアクセスして検証するためのコストと複雑さは、非常に大きなものとなります。

もう一つの根深い問題は偏見です。採用プロセス自体は偏っていることが多いですが(主に企業が従業員の紹介に頼る傾向があるため)、採用における AI と自動化の使用は、問題をさらに複雑にすることがあります。

「採用担当者が決定するさまざまな特性を記述した代表的なデータセットがなければ、候補者を正しく見つけて評価することは絶対にできません」と、IEEEフェローでニューヨーク大学タンドン工学部学部長のジェレナ・コヴァチェビッチ氏は言う。

一例を挙げると、アマゾンは10年間にわたって受け取った履歴書のパターンを分析し、最終的に女性の応募者に対して差別的な扱いをするAIベースの採用ツールを開発しました。 Amazon は最終的にこのツールを放棄しました。

データと AI が直面している最大の問題は、多様性、公平性、包括性 (DEI) を維持することです。自動化と機械学習によって悪化する、採用における多様性関連のミスには次のようなものがあります。

  • 求人広告に無神経、エリート主義的、または包括的でない言葉が使われている(多様な候補者の応募を阻む)。
  • 限られた人材と限られた応募者プール(他の地域からの応募者や特定の学校に通っていない応募者は除く)。
  • リモートワークポリシーなし(障害や交通手段に問題のある候補者は除外)
  • 最低限の規制または業界標準を満たすことを目指す興味深い DEI アプローチ。
  • 自動化の欠如。

AIは問題を引き起こす可能性があるが、分析が解決策となる

AI が採用の万能薬であることは間違いありませんが、Amazon が開発した採用プログラムの失敗以来、AI は大きく進歩しました。調査によると、データ主導の採用チームは同業他社よりも優れた成果を上げていることがわかりました。さらに、採用担当者の 84% が、日常のワークフローで AI と機械学習を活用する能力に高い自信を持っています。

問題は、採用自動化テクノロジーが、人間の偏見を加えず(そして増幅させず)、採用プロセスで AI アルゴリズムをどのように使用できるかということです。

答えは、企業固有のパフォーマンス ベンチマークを確立し、候補者の能力を客観的に測定する主要な指標を特定し、人材分析を使用して採用活動の成功と効率を測定することにあります。

構築された目的を達成するアルゴリズムは、多くの場合、最大かつ最も広範なデータセットにアクセスできるため、その目的を達成します。これらのデータ ポイントを収集し、企業の人材パイプラインまたは採用自動化ソフトウェアに取り込むのは企業の責任です。実装時にはプロセスが逆方向に機能するため、実際の採用ソリューションとしてビジネスに導入する前に、少数の(ただし多様な)候補者プールでアルゴリズムをテストし、その出力を手動で確認することをお勧めします。

<<:  世界トップジャーナルPNASに掲載されました!科学者たちは理論上のコンピューターに基づく意識モデル「意識のあるチューリングマシン」を提案した。

>>:  高度な脅威検出における人工知能技術の応用

ブログ    
ブログ    

推薦する

李開復氏、ペントランド氏と会談:AIはワンマンショーではない、AI冷戦は避けるべき

最近、Sinovation Venturesの会長兼CEOであるKai-Fu Lee博士とAlex ...

ケビン・ケリーがAIブームを解説:超人的なAIを暴く5つの神話

人工知能は非常に人気が高まっているため、ニュースで報道される超知能に関する予測が実現可能なものなのか...

中間レビュー: 2021 年注目のデータサイエンスおよび機械学習スタートアップ 10 社

今日の企業は、競争上の優位性を獲得するために、増え続けるデータを活用し、データ サイエンス、人工知能...

AIがワールドカップの初代審判員になるチャンスはあるでしょうか?

著者 | ユン・チャオ最近、国際サッカー連盟(FIFA)は、2022年にカタールで開催されるワールド...

自動運転のための LiDAR とビジョンフュージョン認識の理解

2022年は、インテリジェント運転がL2からL3/L4に飛躍する絶好のチャンスです。ますます多くの自...

ホーキング博士:人工知能の台頭は人類文明の終焉をもたらす可能性がある

4月27日、北京国家会議センターで2017年グローバルモバイルインターネットカンファレンス(GMIC...

自律型ドローン技術の長所と短所を探る

自律型ドローン技術は、業界全体に変革をもたらす力として登場し、比類のない効率性と革新性を約束していま...

人工知能とIoTがガソリン小売業界を変革

ネットワークは常に企業の神経系であり、ビジネス プロセスとトランザクションはネットワークを通じてのみ...

今日のアルゴリズム: 文字列の乗算

[[421393]]この記事はWeChatの公開アカウント「3分でフロントエンドを学ぶ」から転載した...

掃除機はいくらかかりますか?掃除ロボットの原理とハードウェア構成の詳細な説明

時代の発展とともに、掃除ロボットは多くの家庭にとって必需品となりました。掃除ロボットは、ベッドの下を...

SASは、IoTイニシアチブにAIを組み込むことで企業が競合他社を飛び越えることができると述べている

SAS の新しいレポート「AIoT – IoT リーダーが困難を脱する方法」によると、組織のモノのイ...

今後の国内人工知能産業の発展における5つの大きなトレンド

現在、中国で人工知能の分野で最も多くの投資を受けている5つのサブセクターは、コンピュータービジョン(...

...

将来、軍隊は完全に人工知能になるのでしょうか?空想するのはやめてください!全体的な傾向と方向性は変えられない

現在の国際情勢から判断すると、将来の軍事兵器の開発は主に宇宙に向けられることになるが、スペースシャト...

2021年の人工知能と機械学習の5つのトレンド

人工知能と機械学習は長い間私たちの世界を変えてきましたが、2020年のコロナウイルスのパンデミックは...