人工知能がファッションデザインと生産を変革

人工知能がファッションデザインと生産を変革

人工知能とロボット工学がファッション業界に変化をもたらしています。市場分析からカスタムデザイン、無駄の削減まで、AI はデザイナーがトレンドを常に把握し、対応するための扉を開きます。

物流センターでロボットが商品のピッキングや梱包を行っていることから、衣類や靴の生産もロボットが行っているのも不思議ではありません。現在、人工知能がファストファッションの台頭を推進しています。

ファッション企業は現在、スタイル、質感、色のトレンドを予測するために AI を使用しています。 Google や Amazon もこの動きに参加しています。 Google は、ファッショントレンドやオンライン販売業者の販売データに基づいて人工知能を使って衣服をデザインする Project Muze を立ち上げました。アマゾンはまた、機械学習を使って「流行の」アイテムを識別し、それを複製してアマゾン・エッセンシャルズ製品ラインで生産するプロジェクトにも取り組んでいる。

パリに拠点を置く Heuritech は、ディープラーニングと画像認識を使用して、Dior などのブランドのデザイナーが季節、市場、国をまたいでファッショントレンドを特定できるように支援しています。デザイナーが代表的なアイテムを選択し、Heuritech のアルゴリズムが何千もの公開ソーシャル メディア画像をスキャンして、生地、形状、色など 3,000 を超える詳細を取得します。 Heuritech は、同社のコンピュータービジョンシステムが 1 年以内にファッショントレンドを 90% の精度で予測できると主張している。デザイナーはこのデータを活用してファッションラインを決定します。

精密衣料

AI は人間のデザイナーからの入力によって最も効果的に機能します。Muze プロジェクトの最初のスケッチのいくつかは単純な落書きでしたが、ライブ デザイナーからのガイダンスにより、AI はカスタム ウェアを制作できます。

パーソナライズされた M&M から Nike のスニーカーまで、カスタマイズは小売業の未来です。人工知能とロボットミシンの助けにより、カスタムデザインは大手ファッションハウスからオンラインプラットフォームのEtsyへと移行しつつあります。

ファッション デザイナーは、顧客の 3D 画像を撮影し、正確な寸法に基づいてユニークなカスタム服をデザインできます。デジタル モデルでプロジェクトを作成した後、デザイナーは電子ファイルを SoftWear Automation の Sewbot などのロボット ミシンに送信します。 Sewbot は必要な裁断データを抽出し、裁断と縫製を開始します。機械は、1 個作るか 100 個作るかは気にせず、プロセスは同じです。

持続可能性の要因

無視できないのは、特にファストファッション分野における自動化された設計と生産の世界的な利点です。自動化ロボットは人工知能を使用して布地のパネルを縫い合わせるため、労働面だけでなく、生産を販売時点に近づけることでも生産コストを大幅に削減できます。また、より信頼性の高いサプライチェーンの構築にも役立ちます。これは、COVID-19パンデミックにより小売業者の調達およびフルフィルメント能力が制限された後、さらに価値が高まった利点です。

AI ベースのファッションデザインは持続可能性も向上させます。ソフトウェアは、廃棄物を削減するために布地を最も効率的に使用する方法を決定します。さらに、ファッションは需要に応じて生産できるため、経費と廃棄物を削減できます。

東京を拠点とするファッションラボ Synflux は、デザインを通じて持続可能性の問題に取り組んでいます。 Synflux は人工知能を使用して、「アルゴリズム クチュール」と呼ばれるものを開発しています。人体の 3D スキャンを使用して、機械学習アルゴリズムは布地の無駄を最小限に抑える衣服のパターンを作成できます。デザイナーはコンピュータ支援設計ソフトウェアを使用して、無駄の少ない衣服のパターンをモデル化し、組み合わせます。

人工知能は、進化するファッション業界に新たなレベルのカスタマイズをもたらしています。衣料品の調達と生産の方法を変え、衣料品の二酸化炭素排出量を削減する可能性があります。 AI はデザイナーの競争条件を平等にする可能性も秘めており、オンラインの Etsy デザイナーが高級ファッション ブランドと競争してオーダーメイドの服を提供できるようになります。

<<:  8つの予測分析ツールの比較

>>:  人工知能の未来は人間・機械・環境のシステム知能である

ブログ    
ブログ    

推薦する

データセット検索アーティファクト! 100 個の大規模な機械学習データセットがここに収集されています

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

信頼性の高い人工知能システムのルールをどのように定義し構築するのでしょうか?

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

簡単なアルゴリズムからアセンブリ言語の予備的研究

コンパイルを無視しないでくださいC、C++、Javaなど、日常生活で慣れ親しんでいる高級言語と比較す...

企業向けの優れたビジネス インテリジェンス ツール 10 選

規模に関係なく、企業はニーズに合わせてカスタマイズされたビジネス インテリジェンス ツールを使用して...

人工知能の実装によるIoTセキュリティの最適化

モノのインターネット (IoT) は市場で急速に成長しており、ビジネス戦略は変化し、IoT デバイス...

...

500億のパラメータ、103の言語をサポート: Googleが「グローバルテキスト翻訳」モデルを発表

並列データが不足しているため、小規模言語の翻訳は常に大きな問題となっていました。 Google の研...

PaddlePaddleのクリック率に基づくディープラーニング手法の試み

序文チーム内でクリック率に関する記事をいくつか共有した際に、広告のクリック率の推定値を計算する一般的...

...

人工知能が科学を変える4つの方法

新たな医学研究から宇宙の新たな理解まで、新しいモデルは科学界に衝撃を与えました。世界中のほとんどの人...

アルゴリズムの練習とプログラミング学習に最適な 6 つの Web サイト

Google や Facebook のアルゴリズムを理解しなければ、面接に合格することはできません。...

中国の大学の人工知能専攻ランキング:清華大学、浙江大学、上海交通大学がトップ3にランクイン

AIの開発が国家戦略にまで上り詰めるにつれ、人工知能は大学入試の選択肢の中でも最も注目され、最も人気...

人工知能がクラウドコンピューティングの発展に与える影響

クラウド コンピューティングは、組織の業務、情報の保存、意思決定の方法を変え、技術革新と分析研究への...