電子鼻のウイスキー識別精度は96%にも達する。ネットユーザー:茅台酒にも作ってみよう

電子鼻のウイスキー識別精度は96%にも達する。ネットユーザー:茅台酒にも作ってみよう

国産茅台酒や一部の外国産高級ウイスキーは高価であるが、偽造品の重要なターゲットでもある。

ワイン鑑定家がいない中で、一般の人がワインの品質と真正性を素早く判断するにはどうすればいいのでしょうか?

最近、エンジニアのグループがワインの匂いを嗅ぐために特別に使用されるNOS.Eと呼ばれる「電子鼻」を開発した。

4 分以内にさまざまなウイスキーのスタイル、ブランド、産地を「嗅ぐ」ことができ、ワインのテイスティングに新たなアイデアをもたらします。

なぜ「味」ではなく「匂い」に頼るのでしょうか?

実際、ウイスキーの味、香り、食感、色などの特性は、ウイスキーを評価する上で役立つ情報を提供します。

その中でも、ワインの味に影響を与える主な要因は香りです。研究者たちはこれをNOS.Eを設計する上での大きなブレークスルーポイントとして利用しました。

オーストラリアで開催された2019年のCEBITトレードショーでは、NOS.Eで6種類のウイスキーをテストし、地域で100%、ブランド名で96.15%、スタイルで92.31%の精度を達成しました。

「電子鼻」と名付けられていますが、本当に鼻には見えません!

研究成果は今年4月、IEEE傘下の学術誌「IEEE Sensors」に掲載された。

このニュースを見たネットユーザーの中には、「ついに偽酒が見分けられる!」と興奮気味に言う人もいた。

ネットユーザーの中には、茅台酒を開発すべきだと冗談を言う者もいた。

それで、この気の利いた実用的なワインテイスティングツールはどのように機能するのでしょうか?それは本当に信頼できるのでしょうか?

試験前のサンプル前処理

以前、CeBIT 見本市で、NOS.E の開発者らは、この「電子鼻」の有効性を現場でテストしました。

正式なテストの前に、変数を制御し、結果に対する無関係な変数の干渉を減らすために、研究者はサンプルを前処理しました。

彼らは実験のために 6 つのウイスキーのサンプル (ブレンデッド モルト ウイスキー 3 つとシングル モルト ウイスキー 3 つ) を選択し、各サンプルを等量、個別の固相マイクロ抽出 (SPME) バイアルに入れました。

サンプルは 30°C に加熱され、ガスクロマトグラフィーの参照として SPME ファイバーを使用してクロロベンゼン-D5 がサンプリングされました。

次に、クロロベンゼン-D5 を収集する各 SPME ファイバーを各ウイスキー サンプルの上に置き (液体に触れないように)、5 分間放置しました。

次に、これらの SPME ファイバーを GC×GC-TOFMS 装置に順番に配置し、収集した情報を処理および分析しました。

電子鼻は6つのサンプルに対して396回の検査を実施した。

人間の嗅覚システムを模倣するために、研究者らは NOS.E に合計 8 つの匂いセンサーを装備しました。

公式テストが始まる——

サンプルが入った SPME バイアルに空気が注入され、ワインに含まれる揮発性有機化合物がより速く電子鼻に排出されます。

人間の嗅覚システムを模倣するために、研究者らは NOS.E 用に 8 つのガスセンサーを設計しました。

電子鼻は分子によって検出されたそれぞれの匂いを評価し、そのデータをコンピュータに入力します。収集されたデータは、ノンパラメトリックカーネルベースのモデリングを使用して正規化および前処理されます。

モデリングプロセスはMATLAB上で実行されます。

センサー偏差の影響を軽減するために、次の正規化式が使用されます。

このうち、y(t)とˆy(t)はそれぞれ正規化前と正規化後のセンサー応答を表します。

次に、NOS.E のシステムは、ガス センサーの応答から、センサー応答の最大 1 次微分、最小 2 次微分、最大 2 次微分、入力ピークと応答ピーク間の時間間隔などの 9 つの特徴を抽出します。

特徴抽出後、データは分類されました。各ウイスキーのデータセットはランダムにシャッフルされ、80:20 に分割されてトレーニング セットとテスト セットが構築されました。

トレーニング セットについては、10 分割交差検証 (10-CV) 法を使用して 10 個のサブセットに分割し、ウイスキーの分類モデルを学習します。9 つのサブセットはトレーニングに使用され、残りの 1 つは検証に使用されます。

分類器は、線形判別 (LD)、サポート ベクター マシン (SVM)、およびサブスペース判別 (SUBD)* を使用してトレーニングされ、コンポーネント分類器のアンサンブルが生成されて、新しい複合分類器が構築されます。

最終的な分析結果は、新しい分類器によって端末に送信され、ユーザーに表示されます。

偶発的なエラーを減らすために、研究者たちは各ウイスキーのサンプルに対して複数の実験を行い、各サンプルを10回テストした後、同じ種類の新しいウイスキーと交換して、アルコールの揮発が実験に与える影響を減らしました。

研究者らは合計396件のテストを実施した。

NOS.Eはウイスキーの起源とスタイルを判断するのに優れています

NOS.E によって収集され処理されたデータの正確性をテストするために、研究者らは対照として最先端の二次元ガスクロマトグラフィー-飛行時間型質量分析法 (GC×GC-ToFMS) を使用してウイスキーのサンプルも分析しました。

彼らはNOS.Eテストの結果を3次元で調べました。

最初の側面は、個々のウイスキーのサンプルを互いに分離できるかどうかです。 NOS.E のフィールドテスト結果の精度は次のとおりです。

2 つ目の側面は、さまざまなウイスキーのサンプルの原産地を判断する際に、NOS.E テスト結果の精度が 100% と高いことです。

3 つ目の側面は、さまざまなウイスキーのサンプルのスタイルを判断すると、NOS.E テスト結果の精度は約 82% から 94% の間であるということです。

著者について

この研究論文の第一著者であるウェンティアン・チャン氏は、オーストラリアの山東第一医科大学とシドニー工科大学で教鞭をとっています。彼の主な研究分野は、制御工学コンピューティングと医療コンピューティングです。

西安市の大学の Taoping Liu 氏も NOS.E の開発に参加しました。彼はオーストラリアのシドニー工科大学で博士号を取得しており、主な研究分野は制御工学コンピューティングと医療コンピューティングです。

シドニー工科大学の報告によると、NOS.E はウイスキーの識別に加え、将来的にはブランデーや香水の検出にも使用される可能性があるとのことです。

この研究が推進され応用されれば、近い将来、より多くの種類のアルコールに利用できるようになるかもしれません。消費者は小さな電子製品だけで、ワインの種類と真正性を簡単に判断できます。

まあ、その頃には中国のワイン愛好家は偽の茅台酒を買う心配をしなくて済むようになるはずだよ~(犬の頭)

論文アドレス: https://ieeexplore.ieee.org/document/9701291

参考リンク: [1] https://www.smithsonianmag.com/smart-news/a-new-electronic-nose-may-help-sniff-out-counterfeit-whiskey-180979931/

[2] https://en.wikipedia.org/wiki/ガスクロマトグラフィー

<<:  Python+AIで静止画像を動かす

>>:  私たちの社会は AI に意思決定を任せる準備ができているでしょうか?

ブログ    
ブログ    

推薦する

GoogleのReCaptchaシステムが破られ、機械音声認証の精度は85%に達した

米国のメリーランド大学の研究者4人が、GoogleのキャプチャシステムReCaptchaを解読できる...

...

Google、機械学習を使用して医療イベントを予測するFHIRプロトコルバッファツールをオープンソース化

先月26日、GoogleはarXivに「電子健康記録のためのスケーラブルで正確なディープラーニング」...

嫌がらせ電話をかけてきた相手は実はAIロボットだった?

「ネットワークの向こう側に犬がいるかどうかは分からない」 - テクノロジーの発展により、同じ原理が...

マイクロソフトは、Power Platform 向け Copilot サービスの開始を正式に発表しました。これにより、AI によるアプリ開発が一文で可能になります。

マイクロソフトは10月27日、エンタープライズアプリケーションカンファレンスにおいて、ローコードプラ...

機械学習の教訓: 5 つの企業が失敗を共有

機械学習は現在注目されている技術の 1 つであり、多くのビジネスおよびテクノロジー分野の幹部は、自社...

バックトラッキングアルゴリズム - ロボットの動作範囲

[[415476]]この記事はWeChatの公開アカウント「Magic Programmer K」か...

IoTとAIがコロナウイルスの流行中に企業の事業再開をどのように可能にしているか

[[333668]]数か月に及ぶ極度の不確実性、経済の閉鎖、孤立の後、ようやくゆっくりと経済が機能し...

人間と機械の統合はなぜ難しいのでしょうか?

時間と空間を結びつけるのは速度であり、エネルギーと質量を結びつけるのも速度です。事実と価値を結びつけ...

新しい小売トレンドにおけるビッグデータと人工知能の応用は何でしょうか?

2018年は新しい小売業が爆発的に増加した年でした。誰もがそれを実感したと思います。以前よりもコン...

ズークス、従業員がテスラの企業秘密を盗んだことを認める

[[322566]]この記事はLeiphone.comから転載したものです。転載する場合は、Leip...

ファーウェイの石耀宏氏:成都にインテリジェントシティを構築し、スマートで美しい都市を創る

「巴斯」と呼ばれる快適さと「成都」と呼ばれるライフスタイルがあり、中国で最も幸せな都市として、成都は...

「説明可能な」AIが金融セクターへの信頼を高める

[[423755]]人工知能は、詐欺の特定や金融犯罪の撲滅から、顧客への革新的なデジタル体験の提供に...

Java ソートアルゴリズムの概要 (VII): クイックソート

クイックソートはバブルソートの改良版です。その基本的な考え方は、ソート パスを通じて、ソートするデー...

Pythonとdlibを使用した顔検出

「Dlib は、高度なソフトウェアを作成するための機械学習アルゴリズムとツールの最新の C++ ツー...