規制は消費者と市場を保護するために導入されていますが、多くの場合、規制は複雑で、コストがかかり、遵守が困難です。 金融サービスやライフサイエンスなどの規制の厳しい業界では、コンプライアンスコストを負担しなければなりません。調査会社デロイトは、銀行のコンプライアンス費用は2008年の金融危機以来60%増加していると推定しており、国際リスクマネジメント協会は金融機関の50%が収益の6%から10%をコンプライアンスに費やしていることを発見した。 ロボティックプロセスオートメーション (RPA) や自然言語処理 (NLP) などの人工知能とインテリジェントな自動化プロセスは、効率性の向上とコストの削減を実現し、規制遵守に役立ちます。方法は次のとおりです。 1. RPAとNLPを使用して規制の変更を管理する金融機関は、連邦政府、州政府、地方自治体の当局からさまざまなチャネルを通じて配布される、3億ページにも及ぶ新しい規制を 1 年間で処理する必要がある場合があります。これらの変更を収集、整理、理解し、適切なビジネス領域にマッピングする手作業には時間がかかります。 ロボティック プロセス オートメーションは規制の変更に対応するようにプログラムできますが、規制を理解してビジネス プロセスに適用する必要もあります。ここで、高度な光学文字認識、自然言語処理、人工知能モデルが役立ちます。
これらすべての機能により、アナリストの時間を大幅に節約し、コストを削減できます。 2. 規制報告の簡素化規制報告で最も時間がかかることの 1 つは、何を、いつ、どのように報告する必要があるかを決定することです。そのため、アナリストは規制を確認するだけでなく、規制を解釈し、規制がビジネスにどのように適用されるかについてテキストを作成し、関連するデータを取得するためにコードに変換する必要があります。 あるいは、AI は構造化されていない規制データをすばやく解析して報告要件を定義し、過去の規則や状況に基づいて解釈し、複数の企業リソースにアクセスしてレポートを作成するための自動プロセスをトリガーするコードを生成できます。この規制インテリジェンス アプローチは、金融サービスの報告や、新製品の承認を提出する必要があるライフ サイエンス関連のビジネスをサポートするために普及しつつあります。 3. マーケティング資料のレビュープロセスを短縮する規制の厳しい市場で販売するプロセスでは、マーケティング資料のコンプライアンスが求められます。しかし、新しいマーケティング資料を継続的に承認するプロセスは面倒な場合があります。 製薬会社の間でマーケティング コンテンツをパーソナライズする傾向が強まり、コンプライアンス担当者がすべてのコンテンツが医薬品のラベルや規制に準拠していることを確認する必要があるため、コンプライアンス コストが急激に増加しています。これらのポリシーを拡張するために人員を追加するとコストが大幅に増加する可能性があるため、現在は人工知能を使用してコンテンツをスキャンし、コンプライアンスをより迅速かつ効率的に判断しています。場合によっては、AI ロボットが規制に準拠したマーケティング コピーの編集や作成に使用されていることもあります。 4. 取引監視におけるエラーの削減金融サービスにおける従来のルールベースの取引監視システムでは、誤検知が過度に発生する傾向があります。場合によっては、誤検知率が 90% に達し、すべてのアラートをコンプライアンス担当者が確認する必要があります。 AI を従来の取引監視システムに統合することで、誤ったコンプライアンス警告を最小限に抑え、レビュー コストを削減できます。法的に高リスクと見なされる問題はコンプライアンス担当者にエスカレーションされる可能性があり、これらは自動的に解決できる問題ではありません。コンプライアンス スタッフは高リスクとしてフラグが付けられたトランザクションのみを処理するため、それらのリソースは、より高い価値を付加できる場所に再配置できます。 AI は、新しいトレンドが特定されたときに、従来のルール エンジンや監視システムを更新するためにも使用できます。 5. 身元調査と法的調査を実施する犯罪行為やマネーロンダリングを制限するために、銀行は新規顧客が法律を遵守し、取引関係全体を通じてその行動を維持するようデューデリジェンスを実施する必要があります。特定の個人のリスクレベルに応じて、身元調査には 2 ~ 24 時間かかる場合があります。ほとんどの時間は、文書の収集、データベースの確認、メディアの確認に費やされます。人工知能と自動化により、このプロセスを簡素化できます。ボットを使用して Web コンテンツをスクレイピングし、感情分析を使用して否定的なコンテンツにフラグを立てることができます。自然言語処理技術により、裁判所の文書をスキャンして、分析に最も関連性の高い違法行為の兆候やメディア報道を探すことができます。 |
<<: Google ナレッジグラフ: 10 年にわたる開発
>>: 中小企業はデジタル変革の悪循環からどのように抜け出すことができるでしょうか?
自動車の知能化の時代が到来しました。 12月8日、広州で開催された第2回百度アポロエコシステムカンフ...
COVID-19パンデミックは多くの低・中所得国に壊滅的な打撃を与え、食糧不安の拡大と生活水準の急激...
1月8日のニュースによると、2023年には、生成型人工知能が企業や投資家の間で大きなブームを引き起こ...
スマート製造ブームの到来により、設計、生産、管理、サービスなど、製造業のあらゆる側面に人工知能アプリ...
1. 説明ブロックチェーンは、オープンなデータ操作、改ざん不可能、追跡可能性、国境を越えた分散化な...
[[328804]] 【ガイド】AI時代では、データ、情報、アルゴリズム、統計、確率、データマイニ...
最近、わずか9.9元で個人的な写真を生成できる「Miaoya Camera」など、AI生成の視覚画像...
[[426052]]人工知能の危険性は、作家や脚本家の間で長い間人気のテーマとなってきたが、これらの...
ノイズ除去拡散確率モデル (DDPM) の仕組みを詳しく検討する前に、生成 AI の進歩、具体的には...
AI アシスタントの将来について語るとき、アイアンマン シリーズに登場する魅力的な AI アシスタン...
IT は遠くありません。DT はすでにここにあります。 DT 時代の到来により、「データ + ...