アリババが3D位置マップ圧縮アルゴリズムを革新、その論文結果がトップカンファレンスCVPR 2022に選出

アリババが3D位置マップ圧縮アルゴリズムを革新、その論文結果がトップカンファレンスCVPR 2022に選出

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

5月20日、アリババDAMOアカデミーXR研究室は、視覚的な位置測定の精度を確保しながら地図を250倍以上に圧縮し、携帯電話などのエンドデバイスに保存できる新しい3D位置測定マップ圧縮アルゴリズムを提案した。関連論文は、コンピュータービジョンのトップカンファレンスであるCVPR 2022に掲載されました。同研究室は独自に開発した3次元アルゴリズムの最適化を継続しており、マッピングや測位などのコア技術モジュールで多くの革新を実現していると報告されている。同研究室の論文の多くはトップクラスの国際会議で発表されている。

3D ビジュアル ポジショニングは、没入型インターネットのコア テクノロジーの 1 つです。標準的な 3D 視覚的位置決め方法では、特定のシーンの 3D マップを事前に構築し、特徴点をカメラで撮影した 2D 画像と照合してユーザーの位置と姿勢を計算する必要があります。しかし、3D マップはサイズが大きく、多くのストレージ容量を必要とするため、メモリや帯域幅が限られている携帯電話などのモバイル デバイスには展開できません。

業界では軽量 3D マップに関する多くの研究が行われてきました。DAMO アカデミーの XR ラボは、これまでの研究に基づいて、3D マップを 250 倍以上圧縮し、精度の低下を小さな範囲内に抑えて、モデル サイズと位置決め精度のバランスを実現する新しい方法、SceneSqueezer を提案しました。

SceneSqueezerは階層化戦略を使用して3Dマップを圧縮します

論文「SceneSqueezer: カメラの再ローカリゼーションのためのシーン圧縮の学習」によると、DAMO アカデミー チームは 3D マップを圧縮するために階層的な戦略を採用しました。まず、データベース イメージはペアの共視認性情報を使用してクラスタ化され、シーンは複数のクラスタに分割されて個別に圧縮されました。次に、最終的なポーズ推定精度に基づいて、チームは各イメージの特徴点を選択することを学習しました。最後に、特徴点の記述は特徴量子化法を使用して圧縮されました。このアルゴリズムは、Cambridge LandmarksAachen Day-Nightなどの屋外シーン データセットにおいて既存の方法よりも優れたパフォーマンスを発揮します。

DAMOアカデミーXR研究室の上級アルゴリズム専門家である董子龍氏は、XRチームが独自の3次元アルゴリズムシステムを開発し、マッピングやポジショニングなどのコア技術モジュールで多くのブレークスルーを達成したことを紹介しました。今年は、彼らの論文の多くがトップカンファレンスに選ばれました。例えば、Quadtree Attention for Vision Transformerは、視覚タスクに基づいてTransformerモデルのパフォーマンスを向上させる四分木アテンションメカニズムを提案し、トップディープラーニングカンファレンスICLR 2022に選出されました。Neural Window Fully-connected CRFs for Monocular Depth Estimationは、コンシューマーグレードのパノラマカメラを使用して深度推定タスクを完了できる単一カメラ深度推定アルゴリズムを提案し、3次元マッピングのコストを大幅に削減しました。この論文はCVPR 2022に採択されました。

杭州文山街にあるDAMOアカデミーのXRラボが開発した「ARチェックイン」プロジェクト

XRラボはDAMOアカデミーが新たに設立した研究所で、次世代のインターネット技術の研究に特化しています。チームが開発したARおよびVR技術は、越境電子商取引やデジタル都市エリアなど、さまざまなシナリオに応用されています。たとえば、杭州文山デジタルライフブロックに1:1復元された3次元「デジタルツイン」が構築され、杭州オリンピックスポーツセンターの10万平方メートルの地下駐車場にARナビゲーションサービスが開発されました。

<<:  人工知能が建築を変える3つの方法

>>:  人工知能のおかげで、赤信号待ちは過去のものになるだろう

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

人工知能の台頭によりプログラマーは消滅するのでしょうか?

ローコードおよびノー​​コード プラットフォームの爆発的な成長により、個人でも組織でも、従来はコード...

製造業におけるデジタルツインについて知っておくべきことすべて

インテリジェント製造の分野では、AI 駆動型デジタルツインが重要な技術となっています。デジタル ツイ...

ディープラーニングの問題を無視してはいけない。ゲイリー・マーカスはそれに冷水を浴びせる義務がある

ニューヨーク大学の心理学教授であるゲイリー・マーカス氏は、かつてウーバーの人工知能研究所の所長を務め...

...

...

ChatGPT の機能低下が論争を引き起こしています。AIGC アプリケーションは依然として信頼できるのでしょうか?

スタンフォード大学とカリフォルニア大学バークレー校(UCLA)の研究者による新しい研究では、これらの...

あなたの声は私のパスです

最近私の声が盗まれたことで、AI がすでに社会に混乱を引き起こす能力を持っていることが私には明らかに...

Facebookは人々の生活を一人称で分析する新しいAIシステムを開発中

Facebookは、独自のARグラスを開発するためにRay-Banと提携するなど、拡張現実技術に多大...

電気自動車や自動運転の普及にはエネルギー補給技術の限界を乗り越えなければならない

電気による輸送はますます多様化しています。そして、それは地球規模の持続可能な開発の文脈において重要な...

ウィーンで無人タクシーがデビュー、時速130キロ、航続距離30分

TechXploreによると、オーストリアの首都ウィーンのゼネラリ・アリーナでは、ボーイングやエアバ...

人工知能が教育を改善する32の方法

過去数年間、ソーシャルメディアから音声認識、モノのインターネットから新しい小売業、ロボットから自動運...

MITの研究チームがスマート着替え補助ロボットの衝突防止アルゴリズムを改良

普通の人にとって、毎日起きて服を着るのはかなり簡単な作業です。しかし、身体に障害のある人にとって、着...

臨床研究における人工知能と機械学習の活用の機会をいかに捉えるか

製薬業界の専門家は、人工知能(AI)が2021年に業界で最も破壊的な技術になると考えています。臨床開...