興味深い AI アルゴリズムをいくつかお勧めします。とても面白いです!

興味深い AI アルゴリズムをいくつかお勧めします。とても面白いです!

デュアルスタイルGAN

高解像度のポートレートスタイル転送アルゴリズム​DualStyleGAN​​ ​。

実在の人物の写真​A​が与えられた場合:

画像A

これは変更するスタイルである別の画像​B​です。

写真B

アルゴリズムは画像​A​のスタイルを画像​B​のスタイルに従って転送し、画像​C​を生成します。

画像C

この効果はかなり良いですよね?

このようにして、お気に入りのアニメキャラクターに合わせて、自分の肖像画のスタイルを転送することができます。

アルゴリズムの影響をさらに見てみましょう。

最初の列は元の画像、2 番目の列は参照スタイル、3 番目の列はアルゴリズムによって生成された効果です。

このアルゴリズムは、アバターが必要ないくつかのシナリオに適用でき、ユーザーにオプションのコミック スタイルを提供して、お気に入りのポートレートを生成できます。

​DualStyleGAN​アルゴリズムはオープンソース化されたばかりで、約​300​スターを獲得しています。

プロジェクトアドレス:

https://github.com/williamyang1991/デュアルスタイルGAN

公式アルゴリズムでは 3 つの方法が提供されています。

プログラミングの知識がない友達でもWebページを体験できます。

https://huggingface.co/spaces/hysts/DualStyleGAN

試すには写真をアップロードしてください。

他の 2 つは、Colab 環境とローカル ビルドです。

Colab では、サードパーティの依存関係を自分でインストールする必要はなく、直接開いて実行できる「ラダー」があります。

https://colab.research.google.com/github/williamyang1991/DualStyleGAN/blob/master/notebooks/inference_playground.ipynb

ローカルでテストしたい友人もローカルにデプロイできます。公式のConda環境が提供されており、仮想環境を直接作成できます。

 conda env 作成-f ./environment/dualstylegan_env.yaml

詳しい情報については、 ​README​を直接お読みください。

最後に、素晴らしいエフェクトのセットをご紹介します。

RQ-VAEトランス

私の記事をよく読んでいる友人は、私が書いた NÜWA (Nu Wa) と DALL-E アルゴリズムを読んでいるはずです。

今日紹介するアルゴリズム​RQ-VAE Transformer​テキストを画像に変換するタスクで優れたパフォーマンスを発揮します。

タスクは、テキストの説明に基づいて、説明に対応する画像を生成することです。

例えば:

​A cheeseburger in front of a mountain range covered with snow.​

雪山を前にチーズバーガー。

アルゴリズムは、テキストの説明に基づいて対応する画像を生成します。

例えば:

​a cherry blossom tree on the blue ocean.​

青い海に咲く桜。

アルゴリズムは主に RQ-VAE と RQ-Transformer の 2 つの段階に分かれています。

前者はエンコードを担当し、後者は生成を担当します。

このアルゴリズムはオープンソース化されました:

プロジェクトアドレス:

https://github.com/kakaobrain/rq-vae-transformer

このプロジェクトはローカル環境のみをサポートします。サードパーティのライブラリは、 ​requirements​に応じて直接インストールできます。

 pip インストール-r要件.txt

ぜひ試してみてください。いくつかの効果は非常に興味深いものです。

蛍光表示管

ディープフェイクの顔を変える技術はますます一般的になりつつあります。

顔交換の写真やビデオは非常にリアルなので、肉眼では判別が難しい場合があります。

​VFD​技術的な手段を通じて写真の信憑性を分析するのに役立ちます。

これも CVPR 2022 であり、オープンソース化されたばかりです。

効果については、ご自身でテストしていただけます。

プロジェクトアドレス:

https://github.com/xaCheng1996/VFD

チャッター

2022年のCVPRを見ると、3D再構築やTransformerに関する内容が多かったですね。

状況に応じて、後ほど 3D 再構築を共有します。

<<:  トレーニングは不要、自動的にスケーラブルなビジュアルトランスフォーマーが登場

>>:  人工知能は鉄道の乗客の安全を守ることができるか?

推薦する

AIの変革力:AI市場の探究

人工知能 (AI) は、急速に現代の最も変革的なテクノロジーの 1 つとなり、産業を再編し、生産性を...

AIは水産養殖業界に浸透しつつある。品質と効率性の向上に加え、人員の削減にもつながる。

[[264097]]この農場では、人工知能技術の活用により、人員が 3 分の 2 削減されました。...

2021 年の優れた 5 つの人工知能フレームワーク

この記事では、上位 5 つのフレームワークとライブラリを実際のアプリケーションとともに紹介したいと思...

過去1年間、世界は人工知能の倫理について次のような考えを抱いてきた。

1月下旬に終了したCES 2019で、LGの社長兼最高技術責任者であるIP Park氏が、AIがど...

90年代以降の世代初登場!何凱明と孫建のチームが未来科学賞を受賞し、ResNetは18万回引用された。

先ほど、2023年未来科学賞の受賞者が発表されました!今年の「数学およびコンピューターサイエンス賞」...

...

人工知能の主な研究段階と将来の発展方向は何ですか?

人工知能は常にコンピュータ技術の最前線にあり、人工知能研究の理論と発見はコンピュータ技術の発展の方向...

李開復氏、ペントランド氏と会談:AIはワンマンショーではない、AI冷戦は避けるべき

最近、Sinovation Venturesの会長兼CEOであるKai-Fu Lee博士とAlex ...

ディープラーニングを使用して、写真用の強力な画像検索エンジンを構築します

[[412644]]数日前、鮮明に覚えている昔の写真を見返したいと思ったのですが、どこにあるのか全...

データマイニングにおける10の古典的なアルゴリズムの予備的調査

以下は、選考に参加した 18 個の候補アルゴリズムから選ばれた上位 10 個の古典的なアルゴリズムで...

自動運転車における LiDAR とカメラセンサーの融合

センサーフュージョンは、自動運転車の重要な技術の 1 つです。これは、すべての自動運転車のエンジニア...

運輸省:2025年までに自動運転技術の産業化を推進

道路交通自動運転技術の開発と応用の促進に関する運輸省の指導意見:道路交通の自動運転技術の開発と応用を...

TensorFlow を使用して機械学習モデルを構築する方法

[[432744]] TensorFlow は、Google が開発し、2015 年にオープンソース...

...