データ汚染:次の大きな脅威

データ汚染:次の大きな脅威

人工知能 (AI) と機械学習 (ML) を使用したセキュリティ ソフトウェアを標的としたデータ ポイズニングは、次の大きなサイバー セキュリティ リスクとなる可能性があります。 SANS Technology Instituteの研究ディレクターであるヨハネス・ウルリッヒ氏は、RSA 2021の基調講演で、これは誰もが懸念すべき脅威であると述べました。

「機械学習における最も根本的な脅威の1つは、攻撃者がモデルのトレーニングに使用するサンプルに実際に影響を与えることができることだ」とウルリッヒ氏はRSAで語った。

この新たな脅威が急速に出現する中、防御者はデータ汚染攻撃の検出方法と防止方法を学ぶ必要があります。そうしないと、ビジネスやサイバーセキュリティに関する決定が誤ったデータに基づいて行われることになります。

データポイズニングとは何ですか?

攻撃者が AI モデルのトレーニングに使用されるデータを改ざんすると、そのデータは事実上「汚染」されます。 AI は正確な予測を行う方法を学習するためにこのデータに依存するため、アルゴリズムによって生成される予測は不正確になります。

脅威アクターは現在、サイバー攻撃に使用できる方法でデータを処理しています。たとえば、レコメンデーション エンジンのデータを変更することで、さまざまなことが可能になります。そこから、マルウェア アプリケーションをダウンロードさせたり、感染したリンクをクリックさせたりすることができます。

データ汚染は、人工知能を私たちに対して使用するため、非常に危険です。私たちは、私生活や仕事の多くの側面について AI の予測をますます信頼するようになっています。視聴する映画の選択から、サービスを解約する可能性が高い顧客を知らせることまで、あらゆることを行います。

COVID-19の影響でデジタルトランスフォーメーションが加速し、AIがより普及するようになりました。デジタル取引と接続は例外ではなく標準です。

データ汚染とサイバーセキュリティツール

脅威の攻撃者は、データ ポイズニングを使用して、防御側が脅威を検出するために使用するツールに侵入することもあります。まず、データを変更したり、データを追加したりして、誤った分類を作成する可能性があります。さらに、攻撃者はデータポイズニングを利用してバックドアを作成します。

AI ツールに対するデータ汚染攻撃が増加していることは、企業や機関がこれらのツールの導入を躊躇する可能性があることを意味します。また、防御側がどのデータを信頼すべきかを判断することがより困難になります。

基調講演の中で、ウルリッヒ氏は、解決策はAIサイバーセキュリティツールで使用されるモデルを包括的に理解することから始まると述べた。何がデータを保護しているかを理解していないと、これらのテクノロジーとツールが正確かどうかを判断するのは困難です。

データポイズニング攻撃の特定

データ汚染攻撃を検出するのは困難で時間がかかります。そのため、被害者は問題に気付いたときには、すでに被害が甚大になっていることに気づくことが多いのです。

さらに、どのデータが本物で、どのデータが操作されたのか全く分かりません。データ ポイズニング攻撃は通常、内部で行われ、非常にゆっくりとしたペースで進行します。どちらの場合も、データの変更を見逃しやすくなります。

RSA カンファレンスのセッション「回避、ポイズニング、抽出、推論: 防御と評価のためのツール」で、IBM リサーチの Abigail Goldsteen 氏は、サイバーセキュリティの専門家が Adversarial Robustness 360 Toolbox (ART) を使用してデータ ポイズニング攻撃を識別、ブロック、防止することを推奨しました。このオープンソース ツールキットを使用すると、開発者は機械学習モデルを迅速に作成、分析、攻撃し、適切な防御方法を迅速に選択できます。

私たちが持っているツールを使って

では、AI を使うべきではないでしょうか? 現時点では、AI を完全に放棄するのは非現実的です。そうすると、脅威の主体は AI と ML を単純に使用して、防御できない攻撃を作成することになります。

逆に、防御側として、私たちが持っているツールやデータを盲目的に信頼することはできません。アルゴリズムの仕組みをより深く理解し、データ内の異常を定期的にチェックすることで、攻撃に先手を打つことができます。

<<:  学者がインテリジェンス、モデルとデータAI、デジタルトランスフォーメーションについて語る。このAIイベントには技術的な内容が含まれている。

>>:  NLP がヘルスケアにおける AI の価値を実現する方法

推薦する

...

...

2021年、人工知能は知的ではない

ガートナー曲線について聞いたことがあるかもしれません。新しい技術が初めて導入されたとき、誰も興味を示...

ゲーム開発における機械学習の活用

機械学習のメリット機械学習は多くの分野で驚異的な進歩を遂げてきました。応用分野の観点から見ると、機械...

YouTubeがAIツールシリーズを発表:動画作成の提案、背景の生成、多言語吹き替えが可能

YouTubeは本日、クリエイターカンファレンス「Made on YouTube」において、AIを活...

...

...

まだ人工知能を理解していないのですね?チューリングに「直接」説明してもらってはいかがでしょうか?

[[335755]]タイムトラベルの超能力を与えられたら、どの歴史上の人物と話をして過去に戻りたい...

大規模言語モデルの 7 つの一般的なネットワーク セキュリティ アプリケーション

サイバー脅威の攻撃と防御のバランスがますます不均衡になっている時代に、人工知能と大規模言語モデル (...

AI人材の確保をめぐる秘密の戦い:中国が勝利する可能性は?

[[251811]]画像ソース @Visual China人工知能の概念は、提唱されてから60年以...

ニューラルネットワークのトレーニングを4倍高速化! Google Brainチームが「データエコー」アルゴリズムを提案

[[271402]]ムーアの法則の終焉にあたり、GPU やその他のハードウェア アクセラレータによっ...

機械学習に関する7つの誤解

ディープラーニングを学ぶ過程では、私たちが当たり前だと思っているさまざまな噂やさまざまな「こだわり」...

GPT や Llama などの大規模モデルには「反転の呪い」があります。このバグを軽減するにはどうすればよいでしょうか?

中国人民大学の研究者らは、Llamaなどの因果言語モデルが遭遇する「反転の呪い」は、次のトークン予測...

企業が機械学習を導入する際に直面する課題

機械学習は非常に重要な技術です。現在、50%以上の企業が機械学習の導入を検討または計画しており、企業...