このAIは、監視カメラを素早く検索し、重要なシーンを見つけ、24時間のビデオを10分で処理するのに役立ちます。

このAIは、監視カメラを素早く検索し、重要なシーンを見つけ、24時間のビデオを10分で処理するのに役立ちます。


1月23日のニュース、今日では、ビデオ監視の存在により、過去には検証が困難だった多くの事実を記録することができるようになりました。

しかし、24時間連続監視で1~2秒の「犯罪現場」を見つけようとするのは、依然として労力を要する作業だ。

欲しい写真をすぐに見つける良い方法はありますか?

実際、数人の外国人が、24 時間のビデオ録画を 10 分で処理し、テキストを使用して画面をフレームごとに正確に検索できるツールを開発しました。

何より、無料です!

使い方は?

この道具は「Sieve」と呼ばれ、中国語で「ふるい」を意味します。

まず、Sieve を使用する許可を得るために、API キーを申請する必要があります。

Sieveのウェブサイトのホームページに申し込みポータルがあります。メールアドレスや名前などの簡単な情報を入力するだけです。

次に、受け取ったキーを次の URL に入力します。

https://sievedata.com/App/query?api_key = あなたのキー

開くと、次のインターフェースが表示されます。

「ビデオをアップロード」をクリックし、URL を入力してビデオをアップロードします。

この URL には、クラウド ストレージ リポジトリ上の任意のアドレスを指定できます

もちろん、ローカルビデオをアップロードすることもできますが、コマンドラインを使用する必要があります——

まずリポジトリ アドレスをクローンし、依存関係をインストールします。

 cd automatic-video-processingconda create --name myenv python=3.7conda activate myenvpip install -r requirements.txt

次に、スクリプトを実行し、次の 2 つのパラメータを使用してローカル ビデオをアップロードします。

 python run.py --sieve_api_key キー

プラットフォームが自動的に URL を生成します。

ビデオをアップロードした後、システムが自動的にデータをフレームに分割し、各フレームに対応するメタデータを生成するまで待ちます (これらのメタデータは「タグ」であり、後続のクエリで対応する画像を見つけやすくなります)。

著者らは、約27万フレームの24時間のビデオを10分未満で処理できると述べている。

次に、最も期待される部分であるクエリを開始できます。

クエリでは固定パラメータを使用する必要があります

たとえば、person_count に「3」と入力すると、数秒以内に次の結果が表示されます。

まあ、とても満足しています。足だけを見せている人でも検出できます。

各写真はクリックすると拡大して閲覧することができ、右側にはフレームの元情報も表示されます。

ただし、フレームの位置のみが表示され、具体的な時点は表示されないようです。

その他のパラメータは次のとおりです。

  • person_present、誰かが登場する画面を照会します(True に設定するだけです)。
  • motion_detected、動画像を照会します。
  • 照明、さまざまな照明条件の画像を照会します (たとえば、値が fair の場合は晴れた日を意味します)。
  • loaction は、特定の場所の写真を照会します (たとえば、中庭の値を割り当てます)。
  • 緑、緑の植物が写っている画像を検索します。

クエリを組み合わせることができます。たとえば、「緑の植物、明るい光、2 人の人物」の画像を検索するには、次の 3 つのパラメータを入力します。

必要な結果が見つかったら、画像データをローカル コンピューターにエクスポートすることもできます。

以上が動画検索ツールSieveの使い方と機能です。

本当にリバースモニタリングの効率化が図れるのでしょうか?

しかし、一部のネットユーザーが言うように、これは本当に強力そうだが、ビデオに映っている人物がいつ到着し、いつ出発したかがわかるタイムラインが得られ、複数のカメラ間で「容疑者」を追跡できれば、より実用的になるだろう。

著者は次のように返答しました:より実用的なクエリパラメータを提供することを検討しています

著者について

Sieve の創設者の 1 人であり CEO である Mokshith Voodarla 氏は、まだ 20 歳ですが、カリフォルニア大学バークレー校で電気工学とコンピューター サイエンスの学士号を取得しています。

彼は、Scale AI で ML、Ford Greenfield Labs でコンピューター ビジョン、NVIDIA でロボティクスに携わってきました。

ウェブサイトアドレス:​​クリックして開く​​

GitHub ホームページ: クリックしてアクセス

参考リンク:​​クリックして開く​​


<<:  剪定法を使用してより良い決定木を設計する方法

>>:  デンマークはロボット工学をリードしています – IoT はどのような役割を果たすのでしょうか?

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

GitHub のネイティブ AI コード生成ツール Copilot が Visual Studio 2022 を正式にサポート

現在、Microsoft、OpenAI、GitHub が共同で作成した AI プログラミング支援ツー...

...

工業情報化省がロボット産業の「第14次5カ年計画」を発表:2035年までに指定規模以上の製造業でデジタル化が普及する

12月28日、工業情報化部など各部門は「第14次5カ年計画:インテリジェント製造業発展計画」(以下、...

EUはAI規制のルールを強化する計画で、最も厳しい法案を発表

欧州委員会は4月21日にAIに関する法案草案を正式に発表した。 81ページに及ぶ草案では、EUは社会...

...

シンプルな人工ニューラル ネットワークをゼロから構築する: 1 つの隠れ層

[51CTO.com クイック翻訳] 前回の記事「人工ニューラルネットワークをゼロから構築する(パー...

機械学習研究開発プラットフォームの選択

機械学習は現在隆盛を極めていますが、機械学習を学習・研究し、実稼働環境で活用したい場合には、プラット...

調達における AI の夜明け: 効率性と洞察力の新時代

McKinsey & Company の画期的なレポートでは、AI を含むデジタル調達ソリュ...

...

8つの一般的な確率分布の式と視覚化

現実の世界には、本質的に統計的であると考えられる現象がいくつかあります (気象データ、売上データ、財...

選択が難しいですか?最適な機械学習アルゴリズムの選び方を1つの記事で解説

機械学習アルゴリズムを適用して、関心のある問題を解決したいと考えている初心者/中級のデータ サイエン...

マイクロソフトはAIを活用して新しい電池材料を選別し、電池のリチウムの70%をナトリウムに置き換える

1 月 10 日、マイクロソフトの量子コンピューティング チームは、米国エネルギー省傘下のパシフィッ...

人工知能とコールセンターの衝突が新たな時代を創る

[[430158]]コールセンターは1960年代から存在しており、NASAのミッションコントロールで...

...

携帯電話で AI を使用するにはどうすればいいですか?写真を撮るのは本当にハイテクです

AI、つまり人工知能は、携帯電話で長い間使用されてきました。たとえば、最も一般的な音声アシスタントは...