金融サービス技術インフラに関する意思決定の5つの原則

金融サービス技術インフラに関する意思決定の5つの原則

現在、金融サービス業界にとっての朗報は、フィンテックの戦いがまだ終わっておらず、始まったばかりだということです。金融機関が、競争相手に勝つことを期待して積極的な戦略を採用するか、それとも追いつくことを期待して受動的な戦略を採用するかにかかわらず、対応する時間はまだ十分にあります。

残念なことに、これらの銀行はこれを実現するためにいくつかの問題を克服しなければならないだろう。慣性は金融業界が直面している最大の課題です。金融サービス業界では、短期的なセキュリティを優先しがちです。結局のところ、停電や決済システムの停止でニュースの見出しに載りたいと思う人は誰もいないでしょう。

危険なのは、多くの金融機関が現状維持に注力しすぎて事業がどんどん拡大しているが、市場のニーズを満たさない時代遅れのテクノロジーによってバランスが取られていることだ。しかし、これは彼らを危険にさらすだけでなく、新たな機会をつかむためにさらなる努力を払うことも意味します。

金融機関が金融サービス技術インフラストラクチャの構築を決定する際に従うべき 5 つの原則は次のとおりです。

1. 長期的な視点で構築する

COVID-19パンデミックが始まった当初、この流行に対応するための長期計画を立てていた人は多くなく、彼らが直面する大きな課題を予測できた人は誰もいなかった。 10 年前を振り返ってみると、当時の市場のほとんどの人が予測不可能だと思っていたような形で、テクノロジーと消費者の態度が劇的に変化したことがわかります。未知数が多すぎるため、人々は将来の具体的な出来事について計画を立てることができません。決済インフラの変革に乗り出す金融機関は、今後 20 年間のビジネス ニーズを満たすことができなければなりません。この間、唯一確実なことは不確実性です。

2. ビジネスの優先事項と技術的な現実に合わせて構築する

金融機関は、さまざまな意思決定者のニーズを満たす決定を下す必要があります。アカウント チーム、技術チーム、セキュリティ チーム、ビジネス チームが最初からプロジェクトの構造化において連携することはほとんどありません。したがって、決済インフラストラクチャは、金融機関のビジネスモデル内の決済の動向を反映する必要があります。グローバル銀行と中小規模の金融機関のニーズは大きく異なります。

3. ビジネスモデルの構築

金融サービス技術インフラストラクチャの導入コストは、金融業界が運営するビジネス モデルを反映していない場合は持続不可能になります。決済インフラの構築、許可、運用にかかるコストを適切に予測することは重要なステップであり、この現実を反映したインフラ計画を策定することも重要です。

4. 未来に向けて構築する

さらに将来を見据えると、ブロックチェーンや人工知能などによる破壊的変化が金融業界にさらなる変化をもたらす可能性が高い。開発と展開はまだ初期段階ですが、CTO はこれらのテクノロジーやその他の未知のテクノロジーがもたらす可能性のある変化を予測し、迅速に対応して適応できる必要があります。テクノロジーリーダーは、新しい製品やサービスの導入に遅れずについていく必要があります。そしてそれを効率的に実行してください。

5. 規制要件を満たす建設

金融機関は、特にテクノロジーが消費者とどのように連携するかを規定する新しい規則が策定される際には、規制当局と緊密に連携する必要があります。成功する決済インフラストラクチャを構築する上で重要なのは、新しい規制の変更に迅速に適応する方法を理解することです。もう 1 つの部分は、規制当局が必要とするデータを迅速に抽出して提供する方法です。規制当局が金融機関に新たな要件を課す場合、金融機関は適応できるシステムが導入されていることに自信を持つ必要があります。

しかし、金融機関が新しいシステムを設計したら、作業はそこで終わるわけではなく、それを導入する必要もあります。金融機関は 2 つの選択肢を検討する必要があり、どちらを採用するかは、現在のインフラストラクチャから予算、変更の意欲まで、多くの要因によって決まります。

インフラ建設は爆発的に増加すべきか?

もちろん、金融機関がインフラを更新し構築する必要が生じた場合、それをどのように行うかという問題に直面します。ここでは根本的に異なる 2 つのオプションがあります。

まず、廃棄して交換することができます。金融機関にとってスピードと市場機会が最優先事項であるならば、迅速に行動することが最善の方法です。金融機関は、新しい支払いタイプを迅速に開設し、新しいチャネルを導入して処理することができます。マイクロサービスの開発により、このアプローチが可能になりました。現在では、多数の小さなビルディング ブロックを組み合わせて新しいアプリケーションを迅速に開発することがベスト プラクティスとして認められています。

もちろん、これは今日古いシステムをシャットダウンして明日新しいシステムをロードするという意味だけではありません。実際には、金融機関が徐々に既存のアーキテクチャから切り替えて、新しいアーキテクチャを導入することを意味します。このアプローチの欠点は、実行されるシステムが非常に複雑になり、多くの層のシステムが絡み合う可能性があることです。

2 番目のオプションは、古いシステムが使用されなくなるまで、新しいアプリケーションが採用されるにつれて、最新のテクノロジを徐々に実装することです。タイムラインは数年延びるかもしれませんが、あまり急いで方向転換するのではなく、構造的な課題に対処したい慎重な CTO にとっては前進への道筋となります。

このアプローチは、特定の新しいサービス、製品、収益を導入でき、投資収益率を簡単に実証でき、一度に 1 つの側面に焦点を当てることでプロジェクトの複雑さが軽減されるため、優れています。欠点は、時間がかかることです。

唯一の悪い選択は選択しないことだ

先延ばしにしないでください。先延ばしにすればするほど、変化が難しくなります。従来のインフラストラクチャに依存し続けると、攻撃に対してより脆弱になります。

市場がどこに向かっているのかは不明であり、FinTech で何が起こるかを予測することは困難ですが、金融機関はシステムにさらなる柔軟性を提供する必要があります。

<<:  2021年の量子コンピューティング研究開発の現状と将来展望

>>:  ハードコア冬季オリンピック!上海交通大学が開発した、障害物を回避したり方向転換したりできるスキーロボットがオンラインになった。

ブログ    
ブログ    

推薦する

量子コンピューティング OpenAI が登場?元Google社員3人のチームが、物理学の限界に挑戦するAIコンピューティングチップを開発するために1億人民元を調達

生成型 AI の時代では、コンピューティング能力が技術開発の限界となっていることは明らかです。 Nv...

ナレッジグラフの紹介

1.1 ナレッジグラフの開発履歴ナレッジグラフは 1950 年代に始まり、大きく 3 つの開発段階に...

AI は従業員トレーニングにどのような革命をもたらすのでしょうか?

[[395608]]スキルギャップを埋めるプレッシャーの下、多くの組織が人工知能テクノロジーを導入...

2020年にAIに適した5つのプログラミング言語

AI システムの開発にはコンピュータ コードが必要であり、コンピュータ プログラムを開発する際にはさ...

人工知能と機械学習がスタートアップに与える影響

人工知能 (AI) と機械学習 (ML) は、スタートアップを含む複数の業界に革命をもたらしました。...

...

百度AIシティが上海と契約を締結、インテリジェントイノベーションで上海に新たな伝説を刻む

11月27日、百度は上海市政府と戦略的協力枠組み協定を締結した。上海市党委員会書記の李強氏と市党委員...

人工知能と5G: 新たなデータの世界へ

調査によると、AI デバイスのベンダー中心の展開モデルでは、トラフィックの急激な増加に対応できないこ...

ChatGPTはユーザーがペイウォールを回避できないようにBing検索へのアクセスを停止

7月5日のニュース、6月28日、OpenAIのチャットボットChatGPTは、MicrosoftのB...

機械学習チームにはより優れた特徴エンジニアリング技術が必要

機械学習向けにデータ機能を最適化する機能エンジニアリングのスキルは、データサイエンスそのものと同じく...

...

JetBrainsが2023年の調査レポートを発表:Rustの人気はますます高まり、開発者の77%がChatGPTを使用

JetBrains は 11 月 21 日に、世界中の 26,348 人の開発者からの調査結果をまと...

持続可能な開発の達成において AI はどのような役割を果たすのでしょうか?

長年にわたり、持続可能なエネルギーは科学者にとって大きな関心事である重要な分野でした。人々は、効果的...

地球外文明の探査における人工知能技術の応用

近年、人工知能(AI)は急速に発展し、さまざまな分野で画期的な進歩を遂げています。中国の著名な学者、...

人工知能が教育に力を与え、「ゼロポイント革命」が到来

[[266892]]中国共産党第19回全国代表大会の最新報告は、教育の近代化と教育の情報化の流れに対...