Google がオールラウンドな音楽転写 AI を発表: 曲を一度聴くだけでピアノとバイオリンの楽譜がすべて手に入る

Google がオールラウンドな音楽転写 AI を発表: 曲を一度聴くだけでピアノとバイオリンの楽譜がすべて手に入る

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

一度曲を聴けば楽譜がわかってすぐに演奏できるほか、ピアノ、バイオリン、ギターなど「18種類の楽器」をマスターすることもできます。

これは人間の音楽マスターではなく、 Googleが発表した「マルチタスク・マルチトラック」の音符転送モデルMT3です

まず、マルチタスクとマルチオーディオトラックとは何かを説明する必要があります。

通常、1 つの楽曲は複数の楽器で演奏され、各楽曲はトラックであり、マルチタスクは異なるトラックのスコアを同時に復元することです。

Google は ICLR 2022 に論文を提出しました。

マルチトラックスコアを復元する

自動音楽転写 (AMT) は、自動音声認識 (ASR) よりもはるかに困難です。自動音声認識では、詳細なピッチとタイミング情報を保持しながら、複数の楽器を同時に転写する必要があるためです。

マルチトラックの自動音楽転写データセットはさらに「低リソース」です。既存のオープンソースの音楽転写データセットには、通常、1 ~ 数百時間のオーディオしか含まれておらず、数千時間または数万時間のオーディオを簡単に含めることができる音声データセットの市場と比較すると、非常に小さいです。

これまでの音楽転写は、主に各タスクのさまざまな楽器に合わせて調整されたタスク固有のアーキテクチャに重点を置いていました。

したがって、低リソースの NLP タスクからの転移学習に着想を得て、著者らは、一般的な Transformer モデルがマルチタスク AMT を実行し、低リソースの機器のパフォーマンスを大幅に向上できることを実証しています。

著者らは、単一の共通 Transformer アーキテクチャである T5 と、約 6,000 万個のパラメータを含む T5「小型」モデルを使用しています。

このモデルは、エンコーダーとデコーダーで一連の標準的な Transformer 自己注意「ブロック」を使用します。出力トークンのシーケンスを生成するために、モデルは貪欲な自己回帰デコードを使用します。つまり、入力シーケンスを受け取り、最も高い確率で予測される次の出力トークンをシーケンスに追加し、最後までプロセスを繰り返します。

MT3 はメルスペクトログラムを入力として使用します。出力については、著者らは MIDI 仕様にヒントを得た「MIDI ライク」と呼ばれるトークン語彙を構築しました。

生成されたスコアは、オープンソース ソフトウェア FluidSynth を使用してオーディオにレンダリングされました。

さらに、さまざまな音楽データセットの不均衡や異なるアーキテクチャの問題を解決する必要があります。

著者らが定義したユニバーサル出力トークンを使用すると、多言語翻訳モデルを複数の言語で同時にトレーニングできるのと同様に、複数のデータセットの混合でモデルを同時にトレーニングすることもできます。

このアプローチは、モデルの設計とトレーニングを簡素化するだけでなく、モデルで使用できるトレーニング データの量と多様性も増加させます。

実績

MT3 は、すべての指標とすべてのデータ セットにわたって一貫してベースラインを上回ります。

トレーニング中にデータセットを混合すると、特に GuitarSet、MusicNet、URMP などの「リソースの少ない」データセットの場合、単一のデータセットのトレーニングよりもパフォーマンスが大幅に向上します。

最近、Google チームも MT3 のソースコードを公開し、Hugging Face で試用デモをリリースしました。

ただし、オーディオの変換には GPU リソースが必要なので、Hugging Face では Colab 上で Jupyter Notebook を実行することをお勧めします。

論文の宛先:
https://arxiv.org/abs/2111.03017

ソースコード:
https://github.com/magenta/mt3

デモアドレス:
https://huggingface.co/spaces/akhaliq/MT3

<<:  チップ設計の極めて高いハードルがAIによって「打ち破られる」

>>:  中国の 700 万人のプログラマーが足りない場合はどうすればいいでしょうか?北京大学のソフトウェア自動化の専門家、謝涛氏に聞いた。

ブログ    
ブログ    
ブログ    

推薦する

AIが新たな成長エンジンに。アマゾン ウェブ サービスの技術的手法に耳を傾けてみよう

AI は数年前にテクノロジーの世界で人気を博しましたが、今では何千もの業界で革新と徹底的な応用が行わ...

コロナウイルスのパンデミックはデジタル音声技術に新たな刺激を与えた

突然、タッチを恐れるようになった世界で、音声テクノロジーはまったく新しい様相を呈し始めています。 [...

ドバイが無人「空飛ぶ車」を試験:世界初のドローン旅客サービスとなる見込み

[[204952]]ボロコプター、ドバイで無人空飛ぶ車のテストを開始ロイター通信は北京時間9月26日...

【専門家がここにいるエピソード3】大量ログ分析とインテリジェントな運用・保守

1. AIOpsとインテリジェントログセンター1.1 AIOps の 5 つのレベルインテリジェント...

ナレッジグラフはどのようにして「人工知能」をよりスマートにするのでしょうか?

この記事では、人工知能がインテリジェントでない領域と、ナレッジ グラフに基づく認知知能がインテリジェ...

未来の戦争:AI を搭載した米空軍の偵察機はすでに飛行している...

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

データ構造とアルゴリズム: 奇数偶数による配列のソート II

[[429517]]簡単なシミュレーション問題、ぜひ挑戦してみてください!配列を偶数/奇数でソート...

...

売上を予測するための 5 つの機械学習テクニック

売上予測は、機械学習 (ML) の一般的かつ重要な用途です。予測売上は、ベースラインを確立して新しい...

Googleはプライバシーポリシーを更新し、インターネット上の公開情報をAIモデルのトレーニングに利用することを許可した。

検索エンジン大手のGoogleは7月4日、プライバシーポリシーを更新し、インターネット上の公開情報を...

...

考えてみると恐ろしいですね!人工知能は、成功率70%で人間の行動を操作することを学習したと疑われている。

人工知能に関しては、多くの人が懸念を表明しています。例えば、人類開発の最前線にいるホーキング博士とマ...

この肖像生成AIは、簡単なスケッチから1秒で本物の顔を生成できる

人工知能技術の発展に伴い、その用途は豊富かつ多様化しており、画像との組み合わせにおいては、AI顔認識...

ディープラーニングの簡単な歴史: TF と PyTorch の独占、次の 10 年間の黄金時代

過去 10 年間で、機械学習 (特にディープラーニング) の分野では多数のアルゴリズムとアプリケーシ...

AIが企業の採用ルールをどう変えるのか

[[219941]] AI と機械学習が、人材管理の問題解決に役立っているというのは、皮肉なことです...