[51CTO.com クイック翻訳]次のようなシナリオを想像してみてください。IT 運用および保守担当者がコーヒーを楽しもうとしているときに、突然の緊急アラームが彼らの良い気分を乱します。たとえ不断の努力によって大量のアラームメッセージを解決できたとしても、そのような膨大な作業負荷により、運用・保守担当者は疲弊してしまいます。次のような疑問を抱かずにはいられません。なぜシステムは問題をインテリジェントに予測し、アラームが発行される前に修正できないのでしょうか。IT 運用担当者がハイブリッド クラウド上の複雑な IT システムとアプリケーションを使用してアラーム情報を処理するとどうなるか想像してみてください。間違いなく、彼らは「アラームの泥沼」にはまり込んでしまい、抜け出すことができなくなるでしょう。 以下の目標を達成するために、マイクロサービス向けにカスタマイズされた新しいアーキテクチャが誕生しました。
どのアプリケーションでもマイクロサービスは密接に接続される傾向があり、ドミノ効果を引き起こす可能性があります。アプリケーションの遅延や変更は、予期しない速度で他のサービスに影響を及ぼす可能性があります。すべてのデジタルネイティブビジネスは、データと分散システムという 2 つの要素に依存しています。エンタープライズ アプリケーションでサービスを完全に配信するには、2 つの要素が必要です。デジタルネイティブ組織が成熟するほど、使用する分散システムが増え、所有するデータも増えます。 成熟したクラウドネイティブ企業が直面するもう 1 つの問題は、データの断片化です。これを解決するには、全体的なアプリケーション ソリューションを構築する必要があります。 Gartner は、IT インフラストラクチャによって生成されるデータの量は毎年 2 ~ 3 倍に増加すると予測しています。 このような状況で、なぜ人間がアプリケーションの障害の責任を負わなければならないのでしょうか? ここで、基本的な構成とアラート ソリューションについて疑問が生じます。 現代のマイクロサービスの世界では何を変える必要があるのでしょうか?1. ログを準備する集中化されたサイロ化されたアーキテクチャを分解し、ログを 1 つのシステムに集約します。保存する場合でも表示する場合でも、同じデータ ソースに保存するようにしてください。マイクロサービスによって生成されるデータが大量にある場合、単一ビューのアプローチによりログを簡単に検索できるようになります。これは、最新のマイクロサービス監視へのアプローチをアップグレードするための基本です。 2. 分散ネットワークを管理する分散ネットワークとその通信は無視できません。それはあらゆる組織にとって不可欠な部分です。過度なダウンサンプリング (サンプルを再度ダウンサンプリングし、余分なサンプルを破棄する) によってデータの粒度を犠牲にすることなく、履歴データを長期間保存できるクラスター ソリューションを使用します。オープンソースと SaaS クラウド サービスにより、このソリューションはさらに複雑になります。しかし、サードパーティのプラットフォームに大規模で動的なエコシステムがある場合でも、監視システムをサードパーティのプラットフォームと統合すると、完全な監視可能性が確保されます。 3. 動的なログ/トレースデータを管理するマイクロサービス ベースのアプリケーションが進化し変化すると、生成されるデータも静かに変化します。この場合、監視システムも異常を検出する必要があることを考慮すると、手動で作成されたアラーム ルールだけに頼ることはできません。最も重要なことは、ログ データの作成または更新によって重大なアラームが無視されないことです。 インテリジェンスとロボットデータ自動化 (RDA)ロボティック データ オートメーション (RDA) は、データ処理を自動化し、監視システムとプロセスをよりスマートにしてアラームを管理するように設計されています。機械学習アルゴリズムは、履歴データと既存の学習モデルを使用して、いつでもどこでも新しいアラート ルールを作成できます。基礎となるマシン データとアラームを処理して、アラーム処理プロセスを最適化するための推奨事項を提供します。 RDA はアラーム処理プロセスをインテリジェントにして、人間の介入を減らします。 マイクロサービスの新しい世界へ古い監視方法から移行する 4 つの理由は次のとおりです。 1. クラウドに導入されるアプリケーションが増えています。 2. 反復がより頻繁になり、プログラムに小さな変更を加えるたびに、アプリケーション全体を再コンパイルしてリリースする必要が生じます。 3. すべての変更は他のモジュールに影響を及ぼします。諺にあるように、小さな変更でも全体に影響を及ぼします。 4. 古い監視拡張方法を使用すると、アプリケーション全体に影響が及びますが、実際には、監視拡張のニーズを満たすには、一部のリソースのみを拡張する必要があります。 同時に、新しいマイクロサービス アーキテクチャ モデルでは、サービス検出、構成管理、負荷分散、メッセージングなどに重点を置く必要があります。データを取得し、サードパーティのシステムと統合する機能が必要です。 RDA の AIOps (人工知能による運用と保守) 方式は、ハイブリッド IT システムのパフォーマンスと可用性の監視に役立ちます。 翻訳者紹介Cui Hao: 51CTO コミュニティ エディター、シニア アーキテクト。ソフトウェア開発とアーキテクチャで 18 年、分散アーキテクチャで 10 年の経験があります。元HPの技術専門家。彼は情報を共有することに積極的で、60 万回以上読まれている人気の高い技術記事を多数執筆しています。 『分散アーキテクチャの原則と実践』の著者。 原題: ドミノ倒し: マイクロサービスと分散システムが立ち上がるにはインテリジェントな DataOps と AI/ML が必要、著者: Srinivas Miriyala [51CTOによる翻訳。パートナーサイトに転載する場合は、元の翻訳者と出典を51CTO.comとして明記してください] |
>>: AIoT: 次世代コンバージェンスの利点と用途を理解する
国内外で人工知能や機械学習のチームが大きな成果のニュースを共有し続けているのをよく見かけますが、実用...
大規模言語モデル(ChatGPT や GPT-4 など)に関する最近の評価作業は、主に基本的な自然言...
9月26日のニュース: ここ数か月、マイクロソフトは人工知能 (AI) 事業の開発を加速させています...
ワイヤレス ネットワークのインテリジェンスは、インターネット業界の発展における新たなトレンドとなって...
2023年6月、Ant Groupはデータベース分野の大規模モデルフレームワークであるDB-GPT...
[[273786]] [51CTO.com クイック翻訳] 1980年代のインターネットの出現から...
機械学習は、大規模なデータセットを分析してパターンを識別する能力があることで知られています。基本的に...
この記事を通じて、ML でよく使用されるアルゴリズムについて常識的に理解することができます。コードや...
人工知能 (AI) と機械学習 (ML) は成長サイクルのピークにあるかもしれませんが、だからといっ...
[[399107]]ウー・ウェイ UiPath Greater China 社長前回 UiPath...
人工知能は、コンピュータサイエンス業界のトップテクノロジーの一つとして、1956年にダートマス会議で...
AIの助けがあれば、将来のオフィスではそれほど多くのコーヒーは必要なくなるかもしれません。サイエン...
[[317656]]機械学習は業界にとって革新的で重要な分野です。機械学習プログラムに選択するアルゴ...