デジタル変革時代の産業用ロボット開発の5大トレンド

デジタル変革時代の産業用ロボット開発の5大トレンド

適応性は常に成功する組織の基礎となる原則です。過去 2 年間、世界は不確実性に直面してきましたが、この品質が前面に出てくることがこれほど重要になったことはありません。

[[436627]]

デジタル変革はあらゆる業界で拡大し続けており、企業がデジタル作業環境のメリットを体験する機会が増えています。

これは特に製造業に当てはまり、ロボット工学の進歩により、より効率的な未来への道が開かれています。

2021 年に産業部門を形作るロボットのトレンドは 5 つあります。

人工知能(AI)の助けを借りたより賢いロボット

ロボットがより賢くなるにつれて、効率レベルが向上し、ユニットあたりのタスク数が増加します。 AI 機能を備えたロボットの多くは、プロセスやタスクを実行しながら学習し、データを収集して、実行しながらアクションを改善できます。

これらのよりスマートなバージョンには「自己修復」機能も備わっている可能性があり、機械が内部の問題を識別し、人間の介入なしに自己修復できるようになります。

AI のこうした向上したレベルは、ロボットの労働力を増強し、人間の従業員と同じように働き、学習し、問題を解決できるようにすることで、将来の産業部門がどのようになるかを垣間見せてくれます。

環境を第一に考える

あらゆるレベルの組織が日常業務の環境への影響を優先し始めており、これは採用するテクノロジーの種類に反映されています。

2021 年のロボット工学は、企業がプロセスを改善して利益を増やしながら二酸化炭素排出量を削減することを目指しているため、環境に重点が置かれています。

現代のロボットは、より正確で精密な作業を生み出すことができるため、人為的なミスや間違いを修正するために使用する余分な材料を排除し、全体的なリソース使用量を削減できます。

ロボットは再生可能エネルギー機器の生産を支援し、外部組織にエネルギー消費を改善する機会を提供することもできます。

人間と機械のコラボレーションを促進する

自動化によって製造プロセスのさまざまな側面が改善され続ける一方で、人間と機械のコラボレーションは 2022 年も増加し続けるでしょう。

ロボットと人間が共有スペースで作業することで、ロボットが人間の行動にリアルタイムで反応することを学習し、タスクの実行における相乗効果が大きくなります。

この安全な共存は、人間が機械に新しい材料を持ち込んだり、プログラムを変更したり、新しいシステムの動作を確認したりする必要がある環境で確認できます。

この組み合わせたアプローチにより、より柔軟な工場プロセスも可能になり、ロボットが単調で反復的な作業を完了し、人間が必要な即興性と変化を提供できるようになります。

より賢いロボットは人間にとってもより安全です。これらのロボットは、人間が近くにいることを感知し、それに応じてルートを調整したり、衝突やその他の安全上の危険を防ぐための行動をとったりすることができます。

ロボット工学における多様性

2021年のロボットには統一感がない。代わりに、目的に最適なさまざまなデザインと素材を採用しています。

エンジニアたちは、現在市場で入手可能な製品の限界を押し広げ、従来よりも小型で軽量、機敏な、より合理化された設計を生み出しています。

これらの合理化されたフレームには、人間と機械の相互作用に合わせて簡単にプログラムおよび最適化できる最先端のスマート テクノロジーも搭載されています。ユニットあたりの材料使用量を減らすことで、最終利益が下がり、全体的な生産コストも改善されます。

ロボットが新たな市場に参入

産業界は常にテクノロジーをいち早く導入してきました。しかし、ロボットによってもたらされる生産性の向上により、他の多くの業界でも刺激的な新しいソリューションが採用され続けています。

スマートファクトリーは従来の生産ラインに革命をもたらし、一方で食品・飲料、繊維、プラスチック製造ではロボット工学と自動化が標準となりつつあります。

これは、高度なロボットが焼き菓子をトレイから取り出し、ランダムな向きの食品をパッケージに入れることから、繊維の品質管理の一環として正確な色調を監視することまで、開発プロセスのあらゆる領域で見ることができます。

クラウドの普及とリモート操作の能力により、直感的なロボット工学の影響で、従来の製造施設はすぐに生産性の中心地になるでしょう。

<<:  AIと拡張現実が職場でどのように進化しているか

>>:  ロボット工学が環境に優しい建物にどのように役立つか

推薦する

ディープラーニング入門: オートエンコーダから変分オートエンコーダまで

オートエンコーダ(AE)は、半教師あり学習や教師なし学習で使用される人工ニューラルネットワーク(AN...

...

アルゴリズム王国では中国が他国を追い抜くかもしれない

今年の初め、世界中で人工知能の発展に注目していた人たちの注目を集めた出来事が2つありました。一つは、...

ベイズの定理から確率分布へ:確率論の基本定義の復習

この記事では、最も基本的な確率理論からさまざまな確率分布に至るまで、確率に関する基本的な知識と概念を...

4つのニューラルネットワークシーケンスデコードモデルとサンプルコードの説明

[[189448]]以下は、ニューラル ネットワーク モデルにおける 4 つのシーケンス デコード ...

スーパーマーケットチェーンのシュナックスは、米国の111店舗にシムベのロボット技術を導入すると発表

海外メディアのTechCrunchによると、セントルイスに本拠を置くスーパーマーケットチェーン「シュ...

清華大学と中国人工知能学会が2019年人工知能開発報告書を発表

2019年中国人工知能産業年次大会で「2019年人工知能発展報告書」が発表されました。唐潔教授は、関...

ロボットの魚は本物の魚よりも速く泳ぎます!人間の心筋細胞から作られた紙の魚は108日間自律的に泳ぐことができる

米国のハーバード大学とエモリー大学の研究者らが協力し、ヒト幹細胞から抽出した心筋細胞を使った「人工魚...

プライバシー情報セキュリティに注意を払い、顔認識の数十億ドル規模のブルーオーシャンを開拓しましょう

近年、人工知能の継続的な発展とインテリジェント時代の静かな到来に伴い、顔認識に代表される生体認証技術...

...

AI業界で働く人々はどうすれば失業を回避できるのでしょうか?

「人工知能によって人間が失業したわけではない。人工知能に携わる人々が先に失業したのだ」これはもとも...

...

プライバシー保護を再構築するには、AIモデルに「あなたを忘れさせる」ことを早く行う必要がある

この時代において、プライバシーは長い間誤った主張となってきました。プライバシー保護をある程度回復する...