デジタル変革時代の産業用ロボット開発の5大トレンド

デジタル変革時代の産業用ロボット開発の5大トレンド

適応性は常に成功する組織の基礎となる原則です。過去 2 年間、世界は不確実性に直面してきましたが、この品質が前面に出てくることがこれほど重要になったことはありません。

[[436627]]

デジタル変革はあらゆる業界で拡大し続けており、企業がデジタル作業環境のメリットを体験する機会が増えています。

これは特に製造業に当てはまり、ロボット工学の進歩により、より効率的な未来への道が開かれています。

2021 年に産業部門を形作るロボットのトレンドは 5 つあります。

人工知能(AI)の助けを借りたより賢いロボット

ロボットがより賢くなるにつれて、効率レベルが向上し、ユニットあたりのタスク数が増加します。 AI 機能を備えたロボットの多くは、プロセスやタスクを実行しながら学習し、データを収集して、実行しながらアクションを改善できます。

これらのよりスマートなバージョンには「自己修復」機能も備わっている可能性があり、機械が内部の問題を識別し、人間の介入なしに自己修復できるようになります。

AI のこうした向上したレベルは、ロボットの労働力を増強し、人間の従業員と同じように働き、学習し、問題を解決できるようにすることで、将来の産業部門がどのようになるかを垣間見せてくれます。

環境を第一に考える

あらゆるレベルの組織が日常業務の環境への影響を優先し始めており、これは採用するテクノロジーの種類に反映されています。

2021 年のロボット工学は、企業がプロセスを改善して利益を増やしながら二酸化炭素排出量を削減することを目指しているため、環境に重点が置かれています。

現代のロボットは、より正確で精密な作業を生み出すことができるため、人為的なミスや間違いを修正するために使用する余分な材料を排除し、全体的なリソース使用量を削減できます。

ロボットは再生可能エネルギー機器の生産を支援し、外部組織にエネルギー消費を改善する機会を提供することもできます。

人間と機械のコラボレーションを促進する

自動化によって製造プロセスのさまざまな側面が改善され続ける一方で、人間と機械のコラボレーションは 2022 年も増加し続けるでしょう。

ロボットと人間が共有スペースで作業することで、ロボットが人間の行動にリアルタイムで反応することを学習し、タスクの実行における相乗効果が大きくなります。

この安全な共存は、人間が機械に新しい材料を持ち込んだり、プログラムを変更したり、新しいシステムの動作を確認したりする必要がある環境で確認できます。

この組み合わせたアプローチにより、より柔軟な工場プロセスも可能になり、ロボットが単調で反復的な作業を完了し、人間が必要な即興性と変化を提供できるようになります。

より賢いロボットは人間にとってもより安全です。これらのロボットは、人間が近くにいることを感知し、それに応じてルートを調整したり、衝突やその他の安全上の危険を防ぐための行動をとったりすることができます。

ロボット工学における多様性

2021年のロボットには統一感がない。代わりに、目的に最適なさまざまなデザインと素材を採用しています。

エンジニアたちは、現在市場で入手可能な製品の限界を押し広げ、従来よりも小型で軽量、機敏な、より合理化された設計を生み出しています。

これらの合理化されたフレームには、人間と機械の相互作用に合わせて簡単にプログラムおよび最適化できる最先端のスマート テクノロジーも搭載されています。ユニットあたりの材料使用量を減らすことで、最終利益が下がり、全体的な生産コストも改善されます。

ロボットが新たな市場に参入

産業界は常にテクノロジーをいち早く導入してきました。しかし、ロボットによってもたらされる生産性の向上により、他の多くの業界でも刺激的な新しいソリューションが採用され続けています。

スマートファクトリーは従来の生産ラインに革命をもたらし、一方で食品・飲料、繊維、プラスチック製造ではロボット工学と自動化が標準となりつつあります。

これは、高度なロボットが焼き菓子をトレイから取り出し、ランダムな向きの食品をパッケージに入れることから、繊維の品質管理の一環として正確な色調を監視することまで、開発プロセスのあらゆる領域で見ることができます。

クラウドの普及とリモート操作の能力により、直感的なロボット工学の影響で、従来の製造施設はすぐに生産性の中心地になるでしょう。

<<:  AIと拡張現実が職場でどのように進化しているか

>>:  ロボット工学が環境に優しい建物にどのように役立つか

ブログ    

推薦する

...

博士課程新卒者の年収は80万元。AI業界で就職するのは本当にそんなに簡単なのでしょうか?

[[251000]]最近、人工知能(AI)業界が活況を呈しており、この分野の卒業生にとって有望な就...

スマート病院: 将来の医療技術のガイドラインとトレンド

スマート病院とは何ですか?最も伝統的な病院でさえ、人、プロセス、資産の広大なネットワークを持つ複雑な...

...

何が足りないのでしょうか?現在の機械学習教育の欠点

[[347910]]ビッグデータダイジェスト制作出典: thegradient編集者: フィッシャー...

80億人民元を超える資金で医療AIは「V字カーブ」を描いている

[[373863]] 「人工知能は将来の生産性の中核である」という見解に疑問を抱く人はほとんどいませ...

人工知能のインダストリー4.0指標8つ

インダストリー 4.0 における AI イニシアチブの主要な運用指標と主要業績評価指標 (KPI) ...

アリババAIチームが米国CES展示会に参加、外国人は新たな4大発明のアップグレードを賞賛!

毎年恒例の国際コンシューマー・エレクトロニクス・ショー(CES)が始まったため、ラスベガス・ストリッ...

カルパシーはOpenAIの内部闘争中にビデオを録画しました:大規模言語モデル入門がオンラインです

OpenAIでの混乱はひとまず終息し、社員たちは忙しく「仕事」をしている。今年初めに OpenAI ...

会社はあなたの顔を20万ドルで買いたいそうです!性別や年齢制限なし、ロボットは2023年に実用化される予定

[[437475]]ビッグデータダイジェスト制作著者: カレブ国内ではNFTが年末ボーナスをゲットし...

上位 10 の古典的なソート アルゴリズムの詳細な説明: シェル ソート、マージ ソート、クイック ソート

[[378304]]上位 10 の古典的なソート アルゴリズム - シェル ソート、マージ ソート、...

OpenAIは、歪んだ見解なしにAIが話すようにするために、わずか80のテキストを使用している

[[405587]]この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI...

人工知能、機械学習、ディープラーニング、データサイエンス

人工知能やデータサイエンスに不慣れな方であれば、これらの 4 つの用語を何度も目にしたことがあるはず...

「AI Perspective Eyes」では、マー賞を3度受賞したアンドリューが、任意のオブジェクトの遮蔽補完の問題を解決するチームを率いた。

オクルージョンは、コンピューター ビジョンにおける最も基本的な問題ですが、未だに解決されていない問題...

無人運転車が道路上でテストされる予定でしょうか?あなたの人生はひっくり返るでしょう

無人運転車はいつ公道を走るようになるのでしょうか?この時期は私たちが考えていたよりも少し早いかもしれ...