ディープラーニングの仕組み: 今日の AI を支えるニューラル ネットワークの内部を覗いてみよう

ディープラーニングの仕組み: 今日の AI を支えるニューラル ネットワークの内部を覗いてみよう

[[428985]]

[51CTO.com クイック翻訳]今日の人工知能の繁栄は、人工ニューラルネットワークに基づくディープラーニングと呼ばれる技術と切り離せません。この記事では、これらのニューラル ネットワークがどのように構築され、トレーニングされるかをグラフィカルに説明します。

図1. アーキテクチャ図

人工ニューラル ネットワーク内の各ニューロンは入力を合計し、活性化関数を適用して出力を決定します。このアーキテクチャは、ニューロンがシナプスを介して互いに信号を伝達する脳内のメカニズムにヒントを得ています。

図2

これは、仮想的なフィードフォワード ディープ ニューラル ネットワーク (複数の隠し層があるため「ディープ」) のアーキテクチャです。この例では、手書きの数字の画像を解釈し、それを 10 個の可能な数字の 1 つに分類するネットワークを示します。

入力層には多数のニューロンが含まれており、それぞれのニューロンには画像内のピクセルのグレースケール値に設定されたアクティベーションがあります。これらの入力ニューロンは次の層のニューロンに接続され、重みと呼ばれる何らかの値で乗算された後にアクティブ化レベルを渡します。 2 番目の層の各ニューロンは、多数の入力を合計し、活性化関数を適用して出力を決定し、同様にフィードフォワードされます。

電車

このニューラル ネットワークは、実際の出力と予想される出力の差を計算することによってトレーニングされます。ここでの数学的最適化問題には、ネットワーク内の調整可能なパラメータ(主にニューロン間の接続の重み、正 [青線] または負 [赤線] になるもの)と同じ数の次元があります。

ネットワークをトレーニングするということは、本質的には、この多次元の「損失」または「コスト」関数の最小値を見つけることです。これは複数回のトレーニングを通じて反復的に実行され、ネットワークの状態が徐々に変化します。実際には、一連のランダムな入力例に対して計算された出力に基づいて、ネットワークの重みに多くの小さな調整を加える必要があり、そのたびに出力層の重みを制御することから始めて、ネットワークを逆方向に進めていきます。 (わかりやすくするために、ここでは各層の 1 つのニューロンに関連付けられた接続のみを示しています。) このバックプロパゲーション プロセスは、損失関数が最小化され、ネットワークが新しい入力に対して可能な限り最良の結果を提供するまで、ランダムなトレーニング例のセットに対して繰り返されます。

図3

図4

ステップ 1 : 入力に手書きの「3」が表示されると、トレーニングされていないネットワークの出力ニューロンがランダムにアクティブ化されます。 3 に関連付けられた出力ニューロンは高い活性化 [暗い陰影] を示し、他の出力ニューロンは低い活性化 [明るい陰影] を示すことが期待されます。したがって、たとえば、3 に関連付けられたニューロンの活性化を増やす必要があります [紫色の矢印]。

図5

ステップ 2 : これを行うには、2 番目の隠し層のニューロンから数字「3」の出力ニューロンへの接続の重みがより正の値になる必要があります [黒い矢印]。変化の大きさは、接続された隠しニューロンのアクティブ化に比例します。

図6

ステップ 3 : 次に、2 番目の隠し層のニューロンに対して同様のプロセスを実行します。たとえば、ネットワークの精度を高めるには、この層の最上位ニューロンの活性化を下げる必要があるかもしれません [緑の矢印]。最初の隠し層への接続の重みを調整することで、ネットワークをその方向に押し進めることができます [黒い矢印]。

図7

ステップ 4 : 次に、最初の隠しレイヤーに対してこのプロセスを繰り返します。たとえば、レイヤーの最初のニューロンをよりアクティブにする必要があるかもしれません [オレンジ色の矢印]。

原題: ディープラーニングの仕組み 今日の AI を支えるニューラルネットワークの内側、著者: サミュエル・K・ムーア、デビッド・シュナイダー、エリザ・ストリックランド

[51CTOによる翻訳。パートナーサイトに転載する場合は、元の翻訳者と出典を51CTO.comとして明記してください]

<<:  人工知能はソフトウェア開発のパラダイムを変えている

>>:  Facebookは人々の生活を一人称で分析する新しいAIシステムを開発中

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

オペレーティング システムのプロセス スケジューリング アルゴリズムとは何ですか?

スケジューラは、次に実行するプロセスを選択する役割を担うオペレーティング システム カーネルの一部で...

速報:バイトダンスAIの馬衛英最高責任者が辞任し、清華大学の張亜琴チームに加わる

新知源は、バイトダンスの副社長兼AIラボ責任者である馬衛英氏がバイトダンスを離れ、清華大学の張亜琴氏...

人工知能技術は民族言語の保護に大きな可能性を秘めている

現在、経済や文化の交流のグローバル化に伴い、主流言語や共通言語が勢力を増し、不利な立場にある言語は絶...

Truffleを使用してスマートコントラクトをデプロイする方法

[[397532]]この記事はWeChatの公開アカウント「ブロックチェーン研究室」から転載したもの...

Nature サブジャーナル: 機械学習を使用してヒトの遺伝子制御の背後にある「文法」を明らかにする

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

タオバオ:電子商取引環境における強化学習のいくつかのアプリケーションと研究に関する30,000語の詳細な分析

背景検索技術が発展するにつれ、検索シナリオにおける教師あり学習アルゴリズムの限界が徐々に認識されるよ...

かつて人類を滅ぼす恐れがあったロボットは、商業的なパフォーマンスツールになりました。人工知能は結局のところまだ高価すぎます。

人類文明の継続的な発展に伴い、社会の分業は大きな変化を遂げ、さまざまな産業の置き換えと反復において、...

...

ディープラーニングの「ディープ」とはどういう意味ですか?

ディープラーニングの「深さ」については、ここ数年で多くの議論がなされてきました。私の周りではさまざま...

データ、AI、クラウドを活用してビル運営を変革する方法

CISO、CSO、およびそのチームは毎日、侵害を検出し、リスクを評価し、適切に対応するという課題に直...

Llama 2 の中国語版はオープンソースであり、言語モデルとマルチモーダルモデルの両方を備えているため、完全に商用利用可能です。

7月19日、Metaはついに無料の商用版Llama 2をリリースし、オープンソースの大規模モデルの...

自動運転のセキュリティ確保 - 主流のミドルウェア設計について

国内外の新車メーカーの急速な台頭により、自動車の知能レベルは向上し続けています。車両の中央コンピュー...

...

...