SafetyNet: 自動運転における機械学習戦略のための安全な計画アプローチ

SafetyNet: 自動運転における機械学習戦略のための安全な計画アプローチ

[[427712]]

2021年9月28日にarXivにアップロードされた論文「SafetyNet: 機械学習ポリシーを使用した現実世界の自動運転車両の安全な計画」は、トヨタが買収したLyftの自動運転チームであるLevel 5のものです。

この記事では、専門家のデモンストレーションによるトレーニングを通じて、安全な自動運転制御システムの実装について説明します。機械学習 (ML) 手法にはセキュリティ上の問題と予測不可能なリスクがあるため、ルールベースのフォールバック レイヤーを追加して ML 決定の妥当性チェックを実行し、ML プランナーの衝突を 95% 削減できます。実験全体では、模倣学習 (IL) に 300 時間の運転データが使用され、サンフランシスコでテストされました。

詳細については、「Autonomy 2.0 - 2022-SafetyNet」を参照してください。

コード GitHub - lyft/l5kit: L5Kit - level5.lyft.com

次の図は、SafeNet の基本的なフレームワークを示しています。ML 計画によって軌道予測が行われ、フォールバック レイヤーによって検証されます。

下の画像は、サンフランシスコのダウンタウンにおける SafeNet の自動運転体験の例です。

以下は、モデルのアーキテクチャ図です。Google WayMo の VectorNet に似た階層型グラフ ネットワークで、PointNet ネットワークを使用して入力情報 (車両の姿勢とサイズ、他のエージェントの姿勢、サイズ、ターゲットの種類、HD マップの静的および動的情報、ルート計画ルーティング) をローカルにエンコードし、Transformer を使用してエージェントとマップ機能間の相互作用に関するグローバル埋め込み推論を実行します。この構造は、自転車モデルに基づいて、モーションデコーダーを介して制御信号を生成します。

ネットワーク トレーニングは模倣学習に基づいており、摂動を追加し、分布を拡張して共分散シフトの影響を軽減します。損失関数は、快適性を向上させるために曲率ktとジッタjtの要素を考慮します。つまり、

モーションデコーダーのモデルは次のとおりです。

フォールバック レイヤーでは、軌道評価のためにいくつかの次元が考慮されます。

  • 動的実現可能性: 制約付き縦方向ジャーク、縦方向加速度、曲率、曲率率、横方向加速度、ステアリングジャーク (曲率率 × 速度) を含む。
  • 合法性: 一時停止標識、赤信号、道路から逸脱すること、道を譲ることなどの交通ルール。
  • 衝突確率: 衝突検出

このようにして、軌道は [実行可能、実行不可能] としてマークされ、最終的に ML 予測軌道に最も近い実行可能な結果が生成されます。

トレーニングスケールは次のとおりです。

フォールバック レイヤーの影響:

実験のパフォーマンス比較: ML プランニングと ML プランニング + フォールバック レイヤー

SafetyNet は、ML プランナーとルールベースのシステム フォールバック レイヤーを組み合わせて、サンフランシスコの厳しい路上でテストされた、純粋な機械学習ベースのシステムと比較して、安全性と快適性の指標が向上していることを示しました。

将来的には、フォールバック レイヤーを改良して、保守性が低下し、受動性が増加しないようにすることができます。さらに、モデルベースの強化学習 (RL)、オフライン RL、またはデータ駆動型シミュレーションのクローズドループ トレーニングを利用することで改善を図ることができます。

<<:  2022 年に予測されるロボット技術のトレンド トップ 10

>>:  AIによりドローンは未知の環境でも高速で自律飛行できる

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

自動運転分野における機械学習アルゴリズムの応用に関する包括的なレビュー

機械学習は、車内外のセンサーからのデータを融合して、運転者の状態を評価し、運転シナリオを分類するため...

1.4GB 未満のビデオ メモリで 10,000 フレームのビデオをセグメント化します。コードは現在オープン ソースです。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

ディープラーニングにおける活性化関数の概要

この記事では、さまざまな活性化関数を紹介し、活性化関数の長所と短所を比較します。この記事は、人工ニュ...

...

2021年の機械学習ライフサイクル

機械学習プロジェクトを実際に完了するにはどうすればよいでしょうか? 各ステップを支援するツールにはど...

検出器がミスを犯し、英語を母国語としない人が書いた英語の記事の半分以上がAIによって書かれたと判定された。

7月13日、スタンフォード大学の研究者らは、英語を母国語としない人が英語の語彙力を十分持っていない...

...

GPT-2はGPT-4を監督できる、イリヤがOpenAI初のスーパーアライメント論文を主導:AIアライメントAIは実証的な結果を達成

過去1年間、「次のトークンを予測する」ことを本質とする大規模なモデルが人間の世界の多くのタスクに浸透...

Google が AVA データベースを開始: 動画内の人間の行動を機械が認識できるようにする

[[207258]]コンピューター ビジョンはテクノロジー企業にとって恩恵となりつつあり、これまでは...

Google が 7 つの言語で新しいデータセットをリリース: BERT などの多言語モデル タスクの精度が最大 3 倍向上します。

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

機械学習の基本概念を10枚の画像で説明する

機械学習の基本的な概念を説明するとき、私はいつも限られた数の図に戻ってしまいます。以下は、私が最も啓...

病院が救急科で人工知能を使用する場合、何を考慮すべきでしょうか?

RapidAI の Mary Hardcastle がヘルスケア技術の進歩を検討し、病院が救急治療...

...

...