合成データのみでリアルな顔解析が可能!マイクロソフトの新しい研究は、手動ラベル付けに別れを告げる

合成データのみでリアルな顔解析が可能!マイクロソフトの新しい研究は、手動ラベル付けに別れを告げる

[[427464]]

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

さらに、顔分析タスクでは、その精度は実際のデータに劣りません。

これは Microsoft チームによる最新の研究であり、論文のタイトルがすべてを物語っています。

成功するまで偽り続けなさい。

この記事では、プログラムで生成された 3D 顔モデルと合成データベースを組み合わせて画像をトレーニングする方法を紹介します。顔の解析などのタスクの結果は、実際のデータと比較できます。

研究者らは、これにより手作業によるラベル付けが不可能な分野に新たな方法が開かれたと述べた。

将来、本当に手作業によるラベル付けはなくなるのでしょうか? !

どうやってそれを達成するのでしょうか?

顔データセットをより多様で豊かにしたい場合、収集とラベル付けによってそれを実現することはますます困難になっています。

言うまでもなく、Web スクレイピングなどの収集は、重大なプライバシーおよび著作権の問題を引き起こす可能性があります。手動でラベルを付ける場合、エラーが発生したり、ラベルに一貫性がなくなったりする可能性があります。

そのため、研究チームは、実際のデータの補強または置き換えに合成データを使用することを検討しました。しかし、顔モデル自体が複雑なため、実装が困難でした。

それで、今回はどのように達成されたのでしょうか?

最初のステップは、プログラムを使用して、アイデンティティ、表情、顔の質感、髪型、服装、さまざまな照明環境下での効果を含む合成顔を生成することです。

これらのデータはすべて個別にサンプリングされ、より多様な個体が作成されるように事前に「手動で」ノイズが除去されました。

例えば顔モデルではこんな感じです〜

例えば衣服はファッションデザイナーやシミュレーションソフトウェアデザイナーによって手作りされており、合計30セットのさまざまな衣服がありました。

ヘッドドレス(36個)、マスク(7個)、メガネ(11個)も含まれています。

これに加えてタグが合成されます。

トレーニング段階に移り、研究者らは解像度 512 × 512 の 10 万枚の画像のデータセットを作成し、データ拡張を実行し、150 個の NVIDIA M60 GPU を使用して 48 時間レンダリングしました。

さらに、チームは顔解析ネットワーク(合成データのみを使用)とラベル適応ネットワークをトレーニングし、合成ラベルと人間が注釈を付けたラベル間の体系的な違いを考慮しました。

最終的に、顔分析やランドマークの位置特定などのタスクの結果は、実際のデータを使用する他のモデルに匹敵します。

しかし、研究者たちはこの技術にはまだ一定の限界があることを認めている。

たとえば、顔のモデルには頭と首しかなく、実際のしわをシミュレートできず、顔をランダムにマッチングすると、ひげを生やした女性など、不合理な顔が生成されます。

今後の研究では、これらの制限に対処する予定です。

興味のある方は下の論文リンクをクリックしてください〜

論文リンク:
https://www.arxiv-vanity.com/papers/2109.15102/

<<:  「未来ロボット」が1億元の資金調達を完了。自動物流が次の「阿修羅場」となるか?

>>:  携帯電話に搭載された3D姿勢推定は、モデルサイズが類似モデルの1/7しかないが、誤差はわずか5cmである。

ブログ    
ブログ    

推薦する

Pytorch チュートリアル: 初心者向けクイックガイド

Python は、オープンソースの ML ライブラリ Pytorch のおかげで、データ サイエンス...

...

自動運転マシンビジョンの4つの基本タスクを理解するための1万語

ディープラーニングは、機械学習の中で最も急速に成長し、最もエキサイティングな分野の 1 つになりまし...

時系列を大規模モデルと組み合わせることはできますか?アマゾンの最新研究:大規模モデルで時系列予測を説明できる

最近、Amazon は時系列予測にビッグモデルを使用する方法に関する論文を発表しました。これは時系列...

大型モデルでも「ドリフト」現象は発生しますか? AIアプリケーション開発者は注意が必要

データセンターでの機械学習プロジェクトの開発に精通している読者は、データドリフトとコンセプトドリフト...

Chain World: シンプルで効果的な人間行動エージェントモデル強化学習フレームワーク

強化学習は、エージェントが環境と対話し、蓄積された報酬を最大化するために最適なアクションを選択する方...

ビジュアルトランスフォーマーのより深い理解: ビジュアルトランスフォーマーの解剖学

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

機械学習モデルの仕組み

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

ByteDance は給与の大幅調整を行いましたが、これは隠された 20% の給与増額です。ネットユーザー:業界の清流!

18日夕方、バイトダンスは全従業員宛ての電子メールで重大イベントを発表した。手紙の全内容が明らかに...

...

...

...

Google の自動運転車は「先​​天的な欠陥」があるが、その商品化は「中止」の運命を免れるだろうか?

[[248486]]グーグルの自動運転車開発会社ウェイモはすでに試験的な移動サービスの一部を有料化...

人工知能との競争において、カスタマーサービスと宅配業者が勝つ可能性はどれくらいでしょうか?

[[409291]]労働日報記者 イェ・ユン・チェン・ニン 写真家 チェン・ニン編集者注人工知能(...

モジュール式の機械学習システムで十分でしょうか?ベンジオの教師と生徒が答えを教えてくれます

ディープラーニングの研究者は、神経科学と認知科学からインスピレーションを得ています。隠れユニットや入...