言語モデルは本来の役割を果たしていないため、DETRよりも優れたパフォーマンスでオブジェクト検出に使用されています。

言語モデルは本来の役割を果たしていないため、DETRよりも優れたパフォーマンスでオブジェクト検出に使用されています。

[[426823]]

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

長い間、CNN はターゲット検出タスクを解決するための古典的な方法でした。

Transformer を使用した DETR が導入された場合でも、最終的な検出結果を予測するために CNN が使用されます。

しかし現在、ジェフリー・ヒントン氏と Google Brain チームは、言語モデリング手法を使用してターゲット検出を完全に完了できる新しいフレームワークPix2Seq を提案しています。

チームは、画像ピクセルから対象オブジェクトの「説明」を取得し、それを言語モデリングタスクの入力として使用しました。次に、モデルにこの「言語」を学習させて習得させ、有用なターゲット表現を取得します。

最終結果は基本的にFaster R-CNNおよびDETRと同等です。小さなオブジェクトの検出では DETR よりも優れており、大きなオブジェクトの検出では Faster R-CNN よりも優れたパフォーマンスを発揮します。

次に、このモデルのアーキテクチャを詳しく見てみましょう。

オブジェクトの説明からシーケンスを構築する

Pix2Seq の処理フローは主に 4 つの部分に分かれています。

  • 画像強調
  • シーケンスの構築と強化
  • エンコーダ/デコーダアーキテクチャ
  • 目的/損失関数

まず、Pix2Seq は画像拡張を使用して、固定されたトレーニング例のセットを充実させます。

次のステップは、オブジェクトの説明からシーケンスを構築することです。

画像には複数のオブジェクト ターゲットが含まれることが多く、各オブジェクト ターゲットは境界ボックスとカテゴリ ラベルのセットとして考えることができます。

これらのオブジェクト ターゲットの境界ボックスとカテゴリ ラベルは個別のシーケンスとして表現され、複数のオブジェクトはランダム ソート戦略を使用してソートされ、最終的に特定の画像の単一のシーケンスが形成されます。

それは、冒頭で述べた、対象物を「記述」するための特別な言語です。

その中で、クラスラベルは離散トークンとして自然に表現できます。

境界ボックスは、左上隅と右下隅の 2 つのコーナー ポイントの X、Y 座標とカテゴリ インデックス c を離散化し、最終的に 5 つの離散トークン シーケンスを取得します。

研究チームは、すべてのターゲットに対して共通の語彙を使用します。テーブル サイズ = ビンの数 + カテゴリの数です。

この量子化メカニズムにより、600×600 の画像では 600 ビンのみで量子化誤差ゼロを達成できます。これは、32K 語彙の言語モデルよりもはるかに小さいものです。

次に、生成されたシーケンスを言語と見なし、言語モデルにおける一般的なフレームワークと目的関数を紹介します。

ここではエンコーダー/デコーダー アーキテクチャが使用され、エンコーダーはピクセルを感知してそれらを隠された表現の一般的な画像にエンコードするために使用され、Transformer デコーダーは生成に使用されます。

言語モデルと同様に、Pix2Seq は画像と以前のトークンを予測し、尤度損失を最大化するために使用されます。

推論フェーズでは、モデルからトークンのサンプリングが実行されます。

すべてのオブジェクトを予測する前にモデルが終了するのを防ぎ、精度 (AP) と再現率 (AR) のバランスをとるために、チームはシーケンス強化技術を導入しました。

この方法では、入力シーケンスを拡張し、ターゲット シーケンスを変更してノイズ トークンを識別できるようにすることで、モデルの堅牢性を効果的に向上させることができます。

小型ターゲット検出においてDETRを上回る

チームは評価のために、118,000 枚のトレーニング画像と 5,000 枚の検証画像を含む MS-COCO 2017 検出データセットを選択しました。

DETR や Faster R-CNN などのよく知られているターゲット検出フレームワークと比較すると、次のことがわかります。

Pix2Seq は、小型/中型オブジェクトの検出では Faster R-CNN と同等のパフォーマンスを発揮しますが、大型オブジェクトの検出では Faster R-CNN よりも優れています。

DETR と比較すると、Pix2Seq は大規模/中規模ターゲットの検出では同等かわずかに劣りますが、小規模ターゲットの検出では優れています。

中国人

この論文は、チューリング賞受賞者のジェフリー・ヒントン氏が率いる Google Brain チームによるものです。

第一著者のティン・チェンは中国人です。北京郵電大学を卒業し、2019年にカリフォルニア大学ロサンゼルス校(UCLA)でコンピューターサイエンスの博士号を取得しました。

彼は Google Brain チームで 2 年間働いており、現在の主な研究分野は自己教師あり表現学習、効果的な離散構造ディープ ニューラル ネットワーク、生成モデリングです。

[[426825]]

紙:
https://arxiv.org/abs/2109.10852

<<:  国立国防技術大学は、モバイル環境下で高精度のオンラインRGB-D再構成を実現するROSEFusionを提案

>>:  AIと人間のバンドが初めてコラボしてアルバムをリリース

ブログ    
ブログ    

推薦する

315人の完全なリストが公開: インターネットの蛮行は終結すべき

2022 315 ガラは、3 月 15 日午後 8 時に予定通り開催されます。今年の315ガラは「...

AIの第一人者ジェフ・ディーン氏がGoogleのAI事業を統括

Googleの人工知能事業のトップレベルで人事異動があった。19年間Googleに在籍してきた人工知...

プライバシー情報セキュリティに注意を払い、顔認識の数十億ドル規模のブルーオーシャンを開拓しましょう

近年、人工知能の継続的な発展とインテリジェント時代の静かな到来に伴い、顔認識に代表される生体認証技術...

Cloudera は研究から実稼働までエンタープライズ機械学習を加速します

クラウド向けに最適化された機械学習および分析のための最新プラットフォームを提供する Cloudera...

AIOps の実装を公開! 3 人の WOT エキスパートが AIOps を実現する方法をご覧ください

[51CTO.comよりオリジナル記事] 6月21日、WOT2019グローバル人工知能技術サミットが...

天津市が顔認証訴訟で勝利、コミュニティが顔認証を唯一のアクセス手段として使用することは違法と判断

天津の不動産管理会社は、コミュニティへの出入りの唯一の方法として顔認証を使用していたとして住民から訴...

テラデータCTO バオ・リミン:分析エンジンを使用して機械学習とディープラーニングを実現する

[51CTO.comよりオリジナル記事] 近年、機械学習、ディープラーニング、ビッグデータ分析が話題...

ディープラーニングを使用してコンピュータービジョンのすべての作業を完了するにはどうすればよいですか?

コンピュータービジョンをやってみたいですか?最近では、ディープラーニングが主流となっています。大規模...

...

中国科学院、中国初のクラウドベースの人工知能チップを発表

5月3日、上海国際会議センターで行われた記者会見で、カンブリアン・テクノロジーズのCEO、陳天石氏が...

OpenAIは、レビューの効率を向上させ、人間の関与を減らすことができるコンテンツレビュー機能をテストしている。

人工知能のスタートアップ企業OpenAIは8月16日、GPT-4がコンテンツレビュー機能をテストして...

AIはサイバーセキュリティにおいて人間に取って代わるでしょうか?両者は対立していない

近年、サイバーセキュリティ業界では人工知能技術が話題になっています。セキュリティ オーケストレーショ...

...

スマートなモノのインターネットを導入する時が来た

[[427797]]画像ソース: https://pixabay.com/images/id-567...