機械学習においてデータ品質はどの程度重要ですか?

機械学習においてデータ品質はどの程度重要ですか?

今日、機械学習は組織の複数の事業部門にわたって重要な機能になりつつあります。機械学習プログラムはデータに基づいて実行され、よく整備されたエンジンのように、機械をトレーニングするには大量のデータが必要です。ただし、望ましい最終結果を達成するには、大量のデータよりも、優れたデータ品質が重要です。

データ管理はデータの品質を扱い、分析アプリケーションによって提供される出力を信頼できるものにします。分析アプリケーションにより、企業は業界内での自社の位置を把握できます。テクノロジー業界で現在行われている分析の進歩は目覚ましいものですが、データ品質の点では、まだ標準に達しておらず、機械学習プログラムに依存する企業にとって有害となる可能性があります。

[[386573]]

よりクリーンなデータ

機械学習システムにはさらに多くのデータが必要ですが、そのデータはどこにあるのでしょうか? 小売業界を例にとると、データは何年も収集できます。データが抽出され収集されたら、その品質を判断する必要があります。機械学習エンジニアの仕事は、まさにそれを実行し、ビジネスの観点からデータを理解可能なコンテキストに配置することです。

機械学習エンジニアの責任

エンジニアの第一の責任は、顧客と顧客ベースのニーズを理解することです。つまり、企業はまず、機械学習を特定のビジネス モデルに適合させる方法について指導してくれる機械学習コンサルタントと協力する必要があります。次に、機械学習エンジニアはドメイン専門家の協力を得てシステムからのデータの処理を開始し、データにラベルを付けて分類します。それが問題なのです。ほとんどの機械学習プロジェクトは、ドメインの専門家なしで実施されます。これにより、データの誤分類、オペレーターのエラー、または機械学習システムによる出力に関する誤った仮定が発生する可能性があります。

機械学習エンジニアは、最初からデータの分類にほとんどの時間を費やすため、機械学習製品に最初から不適切なデータが与えられると、そこからエラーが悪化します。これにより、教師なし機械学習が実現しました。

教師ありおよび教師なし機械学習

教師あり機械学習は、入力/出力ペアの例を使用して、関数を対応する用語にマッピングするプロセスです。このようなモデルを使用すると、データ エラーなしで最初からパフォーマンスを測定できます。

教師なし機械学習はこれに矛盾します。ラベル付けされたデータがなく、アルゴリズムのパフォーマンスを測定する実用的な方法がありません。このようなプログラムの目的は、データの基礎となる構造を見つけ出し、それをさまざまなカテゴリに分類することです。しかし、教師なし機械学習には利点があります。これらのアルゴリズムは、人間には馴染みのないデータのパターンを認識することができます。したがって、機械学習のアプローチを選択するときは、ビジネスにおけるその使用方法を理解することが重要です。

機械学習ではデータの品質が重要です。必要なデータ品質がビジネス要件を満たしていない場合、教師なし機械学習が救世主となります。 AI ベースのプログラムでデータを評価することで、正確なビジネス洞察を提供できます。しかし、ビジネスに万能な解決策は存在しません。

<<:  自動運転の 6 つのレベル: 真の無人運転までどれくらいの距離があるのでしょうか?

>>:  最短経路問題の探究: ダイクストラのアルゴリズム

ブログ    
ブログ    

推薦する

イアン・マッシンガム:AWSはモノのインターネットと人工知能への投資を継続

[51CTO.com からのオリジナル記事] 先進的なクラウドサービスプロバイダーとして、AWS は...

人工知能は広告に関して私たちを誤解させている。今こそ誤りを正すべき時だ

社会が急速に変化する時代において、ブランドセーフティ戦略は分裂を招き、保護対象であるブランド評判その...

ロボットに仕事を奪われるのではないかと心配ですか?教師、弁護士、物理学者は「最も安全な職業」に含まれる

北京時間4月16日、外国メディアの報道によると、ロボットが人間の仕事を代替するというのはSF映画のス...

スマートポインターボックスの謎を解明

[[416792]]この記事は、董澤潤氏が執筆したWeChat公開アカウント「董澤潤の技術ノート」か...

ロボットの台頭:伝統産業を変革する新技術

アルゴリズムの時代が到来しました。 Google、Amazon、AppleなどのIT大手が開発した、...

Pika、Gen-2、ModelScope、SEINE…AIビデオ生成で最高なのはどれでしょうか?このフレームワークは理解しやすい

AIビデオ生成は最近最もホットな分野の一つです。さまざまな大学の研究室、インターネット大手の AI ...

ディープラーニングのパイオニア、ヤン・ルカン氏、叱責を受けてツイッターを辞める「皆さんはもうすべて知っています。これからは何も言いません」

2週間に及ぶ「舌戦」の末、チューリング賞受賞者でフェイスブックの主任AI科学者であるヤン・ルカン氏...

...

...

...

金融規制当局が注意喚起:「AIによる顔の改変」などの新たな詐欺手法に注意

10月9日、近年、犯罪者が詐欺の手口を絶えず革新しており、金融消費者がそれを防ぐことが困難になってお...

自動化でワークライフバランスを改善

多くの従業員にとって、仕事と生活のバランスを取ることは課題です。私たちは睡眠とほぼ同じくらいの時間を...

...

...

人工知能は厳しい規制の時代に入る

ChatGPTに代表されるLLM(Large Language Model)に基づく生成AIアプリケ...