認知システムが機械学習とセマンティック技術を組み合わせるべき理由

認知システムが機械学習とセマンティック技術を組み合わせるべき理由

ワインとチーズの組み合わせを識別するのに役立つアプリケーションを構築したいとします。最も優れたパフォーマンスを発揮するのはどれでしょうか? 機械学習のみに基づいたアプリケーション、専門知識のみに基づいたアプリケーション、あるいはその両方の組み合わせでしょうか?

[[383799]]

ほとんどの機械学習アルゴリズムは、「知識獲得ボトルネック」と呼ばれる AI におけるよく知られた問題を解決するために開発されました。これは、データ サイエンティストと並んで、主題専門家 (SME) が知識モデルを効果的かつ持続可能な方法で操作できるようにする方法という問題に対処します (「タクソノミーとオントロジー - 知識モデリングの陰と陽」も参照)。

機械学習アルゴリズムはデータから学習するため、実装が成功するかどうかは、データの品質と、データのセマンティクス (意味) をエンコードするために使用される方法に密接に関係していることは明らかです。セマンティック ナレッジ グラフは、データ品質を大幅に向上させるのに役立ちます。また、機械学習プロジェクトを開始する際にも役立ちます。ヤンコ・イワノフ氏の最近の記事では、一言で言えば「機械学習アルゴリズムは、まず言語の基礎を学ぶ必要がある子供である」と述べられています。

ここ数か月、私たちは市場の動向を観察してきました。さまざまな組織が機械学習に基づくアプリケーションの最初のバージョンを実装しました。 2 回目の反復では、次の 3 つの問題を解決するのに役立つテクノロジと方法を探しています。

  • 機械学習アルゴリズムは、あいまいさを排除するなど、データの正しい意味を「理解」するのに十分な信号を取得できないことがよくあります。精度は予想よりも低いです。
  • 認知プラットフォームでは、学習に機密データが必要になることが多く、そのデータはクラウドで処理すべきではありません。
  • 中小企業の豊富な経験と知識は体系化できず、アルゴリズムに組み込まなければ無駄になる。

人工知能は単なる技術ではない

「知識獲得のボトルネック」に直面しているということは、専門家の知識があらゆる組織にとって重要な資産と見なされていることも意味します。これらの黄金の宝物は、私たちの制御を超えた機械によって処理される可能性があるクラウドに移動されるべきではありません。むしろ、中小企業も含め、テクノロジーとアプローチの適切な組み合わせを効果的に実装することが重要です。優れた AI 戦略とは、より良い結果をすぐに生み出すことだけでなく、人間と機械の間に効果的なパートナーシップを構築する方法も意味します。

最近発表された IDC のホワイト ペーパーでは、AI の社会技術的側面について論じ、問題の核心に迫っています。「セマンティック テクノロジを採用して認知ソリューションを提供することで、組織は開発者や IT プロフェッショナルへの依存を大幅に減らすことができます。セマンティック データ管理がすでに導入されているため、データ駆動型アプリケーションの導入はドメイン エキスパートとビジネス ユーザーによって推進されます。」

<<:  人工知能は建設ロボットを誇大広告から現実のものへと変える

>>:  人工知能、ディープラーニング、機械学習の概念と違い

ブログ    
ブログ    

推薦する

ロボット導入の「秘密」:継続的な学習、知識の伝達、自律的な参加

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

AIの覚醒はなんと恐ろしいことか!人工知能は人間に取って代わり、地球の新たな支配者となるのでしょうか?

人工知能が人類を転覆させるのではないかと人々が心配する理由は2つしかありません。1つ目は、ロボットの...

労働者は大きなモデルに遭遇します。外の世界はすでにこのように機能しているのでしょうか?

オフィスのシナリオでは、PPT の作成は最も一般的なタスクの 1 つです。業務報告、製品発表、イベン...

ホーキング博士:人工知能の台頭は人類文明の終焉をもたらす可能性がある

4月27日、北京国家会議センターで2017年グローバルモバイルインターネットカンファレンス(GMIC...

線形回帰の勾配降下アルゴリズムのオクターブシミュレーション

[[190464]]勾配降下法の理論部分では、導出プロセスが非常にわかりにくいと嘆いたことがあり、よ...

Wikipedia+巨大模型で幻想を破れ!スタンフォードWikiChatはGPT-4を上回り、精度は97.3%

大規模言語モデルの幻覚問題が解決されました!最近、スタンフォード大学の研究者が、幻覚をほとんど起こさ...

第4回パラダイム NeurIPS 2020: ナレッジグラフ埋め込みの自動化

少し前に、Fourth Paradigm の上級研究員である Quanming Yao 博士が、Ne...

8つのソートアルゴリズムのPython実装

この記事では、主に 8 つの一般的なソート アルゴリズムの基本概念とそれらの Python 実装を紹...

AlphaGoの仕組み:マルチエージェント強化学習の詳細な説明

このレビュー記事では、著者はマルチインテリジェンス強化学習の理論的基礎を詳細に紹介し、さまざまなマル...

シンプルなデータ暗号化と復号化アルゴリズムの実装方法を教えます

この記事では、シンプルだが実用的な暗号化方式を実装する方法を紹介します。実際のプロジェクト開発におけ...

Pudu Technology、新製品「Hulu」をリリース、4月19日より先行販売開始

人工知能やマルチセンサー情報融合などの技術の進化により、サービスロボットは急速に発展し、さまざまな分...

ディープラーニングの父が懸念:データ漏洩、AI兵器、批判の欠如

[[254553]]マーティン・フォードは2015年に出版した『ロボットの台頭』で大きな話題を呼びま...

CMU、NUS、Fudanが共同でDataLabを立ち上げ:テキストフィールドでのデータ分析と処理のためのMatlabを作成

データ中心の人工知能の構築は、今後のトレンドになりつつあります。 1年以上前、アンドリュー・ン氏は「...

AIが気候変動に効果的に対抗する方法

人工知能(AI)の活用は気候変動との闘いに貢献することができます。既存の AI システムには、天気を...

世界がH100を奪い合っている! Nvidia が GPU の優位性を達成、主任科学者が成功の 4 つの要素を明らかに

現在、NVIDIA は GPU の優位性の座にしっかりと座っています。 ChatGPT の誕生により...