機械学習とディープラーニングの違いを簡単に分析する

機械学習とディープラーニングの違いを簡単に分析する

【51CTO.com クイック翻訳】

[[379353]]

現代社会に人工知能の波が押し寄せる中、機械学習、ディープラーニング、コンピュータービジョン、自然言語処理などの用語はすでに多くの人々に親しまれています。今後数年間で、ディープラーニングや機械学習の能力を持つ企業が産業界と学術界の両方で重要な役割を果たすことが予想されます。

人工知能の分野の基礎知識に興味があるなら、多くの人工知能技術に共通する 2 つの概念、機械学習とディープラーニングがあることに気づくでしょう。両者の違いを理解することは非常に重要であり、この記事ではこの点について簡単に分析します。

ディープラーニング: 機械学習を実装するための技術

いわゆるディープラーニングは、機械学習のサブセットに過ぎません。これは、データを処理し、人間の脳から分析および学習するニューラルネットワークを構築およびシミュレートするために使用されます。そのため、ディープニューラルネットワークとも呼ばれます。その基本的な特徴は、脳内のニューロン間で情報を伝達および処理するモードを模倣することです。

ディープラーニングの利点は次のとおりです。

l 手動で機能を設計する必要がなく、自動的に学習された機能が現在のタスクに最適です。

l タスクはデータの自然な変化に対して自動的に堅牢性を獲得します。

l 強力な一般化により、同じディープラーニング手法をさまざまなアプリケーションやさまざまなデータ タイプに使用できます。

複数の GPU を使用すると、大規模な並列計算を実行できます。データ量が多い場合は、より良い出力結果が生成されます。

l そのアーキテクチャはスケーラブルであり、新しい問題に適応する可能性があります。

機械学習: 人工知能を実装する方法

いわゆる機械学習とは、簡単に言えば、経験から自動的に学習し、発展する能力をシステムに与える人工知能を実装する方法です。特定のタスクを解決するためにハードコードされた従来のソフトウェア プログラムとは異なり、研究者は大量のデータとさまざまなアルゴリズムを使用してマシンを「トレーニング」し、マシンがタスクを実行して完了する方法を学習できるようにします。

機械学習の利点は次のとおりです。

l スパム検出の問題を解決します。

l 製造現場における設備機能の最適化と生産効率の向上。

マーケティング手法を簡素化し、販売量の予測を支援します。

l 予測保守機能の向上

セキュリティとネットワークパフォーマンスの向上

将来の可能性

多くの企業は、機械学習とディープラーニングを使用して大量のデータから洞察を得て、インテリジェントな自動化、ビジネス インテリジェンスを実現し、運用を最適化して問題を最小限に抑え、利益を最大化しています。一般的に、ディープラーニングは大量の非構造化データ(テキスト、ビデオ、画像、センサーデータ)から知識を獲得し、より複雑なタスクを解決します。これにより、コンピューター ビジョン、音声解釈、自然言語処理などの分野で機械学習手法の開発が促進されました。組織が継続的に大量のデータ ストリームを生成している場合は、ディープラーニングの使用を検討する価値があります。

ディープラーニングと機械学習は、すでにしばらく前から存在しています。より多くの収益を生み出すために、多くの業界ではディープラーニングや機械学習のアルゴリズムを採用し始めており、従業員にこの能力を習得させて会社に貢献するようトレーニングしています。多くの企業が複雑な課題を解決するために革新的なディープラーニング技術を導入しています。将来、人間の想像力と技術の拡大とともに、人工知能の限界はさらなる可能性を切り開き続けるでしょう。

元記事: ディープラーニングと機械学習の違いを理解する、

モノミタ・チャクラボルティ

[51CTOによる翻訳。パートナーサイトに転載する場合は、元の翻訳者と出典を51CTO.comとして明記してください]

<<:  AIに取り組んでいる学部生がオンラインでクラッシュ:GitHubモデルの実行に3か月かかり、難しすぎる

>>:  データサイエンスと人工知能の専門家がプログラミングスキルを向上させる方法

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

4つのレベルから見た人工知能の経済分析

[51CTO.com クイック翻訳] 人工知能 (AI) システムは経済を変え、大量の失業と巨大な独...

「Split Everything」のビデオ版はこちらです。数回クリックするだけで、動いている人物や物体が丸で囲まれます。

写真ビデオセグメンテーションは多くのシナリオで広く使用されています。映画の視覚効果を高めたり、自動運...

2019 年に登場する 10 の機械学習アプリケーション

[[257674]]まだ始まったばかりの 2019 年には、どのような新しいアプリケーションが登場す...

Rocket Launch: 効率的で軽量なネットワーク トレーニング フレームワーク

まとめクリックスルー率の推定などのオンラインリアルタイム応答システムでは、応答時間に関して非常に厳し...

スーパーマリオをプレイする3本の機械指がサイエンス誌に掲載された

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

トランスフォーマーは人気を失っているのか?常識的な問題を解決したい場合、ニューラルネットワークは答えではない

NLP 研究者は皆、言語モデルは文法的な文脈情報しか学習できず、常識的な質問に関しては無力であること...

...

MITはAIを活用して3Dプリント用の新素材の発見を加速

[[430184]]さまざまなアイテムの製造における 3D プリントの人気が高まるにつれ、特定の用途...

機械学習の第一人者マイケル・ジョーダンが人工知能について語る8つの質問:マスクはAIを理解していない

写真ビッグデータダイジェスト制作Michael I. Jordan は、機械学習、確率、統計、グラフ...

...

メモリを3%~7%削減! Google がコンパイラ最適化のための機械学習フレームワーク MLGO を提案

現代のコンピュータの出現により、より高速でより小さなコードをコンパイルする方法が問題になりました。コ...

DeepSeek の最適な使い方とは?ウェストレイク大学が自律的に進化できるモバイルインテリジェントエージェント「AppAgentX」をリリース

1. 背景近年、大規模言語モデル (LLM) の急速な発展により、人工知能は新たな高みに到達していま...

...

自動運転のためのニューラルネットワークとディープラーニング

先進運転支援システム (ADAS) は、道路の安全性と旅行体験に対するドライバーと乗客のより高い要求...

2021年の機械学習ライフサイクル

機械学習プロジェクトを実際に完了するにはどうすればよいでしょうか? 各ステップを支援するツールにはど...