2021年には、人工知能が私たちの生活にさらに統合されるでしょう。これは何を意味するのでしょうか?

2021年には、人工知能が私たちの生活にさらに統合されるでしょう。これは何を意味するのでしょうか?

人工知能の歴史は、アラン・チューリングがチューリングテストを発明した 1950 年代にまで遡ります。チューリングマシンは基本的に自分で考えることができるマシンです。それから70年が経ち、当時のSF映画が現実になったとしたら、世界はロボットで溢れ、人間はロボットの召使いとなっているだろう。

[[374864]]

もちろん、私たちは今生きており、これは全く起こらなかったことを知っています。開発不足か資金不足かはともかく、AI はまだ私たちの生活を完全に支配してはいません。それにもかかわらず、AIはすでに私たちの日常生活に浸透しています。音声アシスタントの使用からチャットボットとの会話まで、このタイプの最新ロボットは人間の生活をより便利にしています。

さらに、世界的なパンデミックにより、開発者たちは AI が実際に何ができるかを示す機会をつかみました。そのため、脆弱な人々や介護者の生活を楽にするために、世界中の病院や家庭で導入されています。ロボットが清掃や患者のケアを行えるようになるため、医師はより多くの医療業務に専念できるようになります。

しかし、テクノロジーが進歩し続けるにつれて、人工知能は開発と実験の最前線に立っています。これは、2021 年にあなたの人生に素晴らしいことが起こることを意味しています。

バイオセーフティ

この伝染病は世界をインターネットへと駆り立てた。これは、消費者がハッキングや詐欺に対してより脆弱になっていることを意味します。したがって、人々を守るために、生体認証は私たちの生活においてより重要な役割を果たすことになります。顧客の身元確認に顔認証を使用する企業が増えるでしょう。この本人確認方法を採用すると、サイバー犯罪や詐欺の防止に役立ちます。

私たちの多くはデバイスのロックを解除するために指紋認証に頼っていますが、パンデミックによって、私たちがどれほど多くの細菌を拡散させているかを痛感させられました。指紋生体認証は長年にわたり役立ってきたものの、必ずしも最も衛生的ではないかもしれないということに人々は気づき始めています。そのため、開発者は非接触型生体認証へと移行しつつあります。これには顔または目のスキャンが含まれます。しかし、手のひら静脈認証は将来のセキュリティ技術と考えられていますが、2021年には非接触型指紋技術の研究開発が主流になるでしょう。

スマートシティが新たな標準となる

気づいているかどうかに関わらず、スマートシティは私たちの生活の大きな部分を占めるようになりました。車は自動的に道路を横断でき、無数の人工知能監視カメラが世界の秩序を維持します。

COVID-19は2020年にスマートシティ開発にいくつかの挫折をもたらしましたが、専門家は2021年も引き続きAIをデジタルシティに統合する取り組みを続けています。人工知能は人間に取って代わり、通常は都市住民が行う作業を自動化します。つまり、エラーが発生する可能性が低くなります。

さらに、スマート シティ データに関する情報がクラウドに保存されるにつれて、AI はデータをより迅速かつ正確に分析できるようになります。気づいていないかもしれませんが、2021年に私たちが都市に入るたびに、人工知能がデータを分析し、都市空間を改善する方法を見つけます。

ハイパーオートメーションは増加する

ハイパーオートメーションは主要な IT トレンドと考えられており、あらゆる企業を自動化できることを意味します。これを実現するために、人工知能と機械学習が開発において重要な役割を果たします。

パンデミックによりこの考えは加速した。そのため、このコンセプトで成功するには、企業は変化する状況に適応し、対応できなければなりません。 「インテリジェント プロセス オートメーション」または「デジタル プロセス オートメーション」とも呼ばれます。

ディープラーニングと機械学習は、機械がアルゴリズムを学習して改善するのに役立ちます。つまり、必要に応じて変更に簡単に適応できるということです。また、企業は自動化し、予期しない状況に適応できるようになることも意味します。その結果、AI と自動化は私たちの日常生活の中で常に変化する部分になるでしょう。

2021年に何が起こるかは誰にも分かりません。しかし、私たちが確実に知っているのは、AI が今後も発展し、私たちの生活を向上させていくということです。生体認証からスマートシティ、さらには自動化まで、AI はますます進化しています。もし人工知能がいつか私たちの生活を完全に支配するようになったとしても、結局それはそれほど悪いことではないのかもしれません。

<<:  フロントエンドでも機械学習を理解する必要がある

>>:  人工ニューラル ネットワークのドライバー: 活性化関数とは何ですか?

ブログ    

推薦する

IBM: ワトソン人工知能システムをすべてのクラウドプラットフォームに公開

米国のテクノロジーメディアの報道によると、IBMは本日、ワトソンブランドの人工知能サービスを自社のク...

...

このレーシングAIはもはや短期的な楽しみを求めるのではなく、長期的な戦略を考慮することを学んだ。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

物理学界に嵐を巻き起こした室温超伝導の論文は、8人の共著者によって報告された後、ネイチャー誌によって撤回された。第一著者は調査中である。

多くの紆余曲折を経て、室温超伝導に関する熱狂は2023年末にようやく終焉を迎えた。 11月7日、ネイ...

...

茅面映画の李明輝氏:興行収入予測における機械学習の実用化

[51CTO.comより引用] 近年、わが国の興行収入市場は飛躍的に成長し、2011年には150億ド...

IEEE: AI の時代において、基本的なサイバー衛生で十分でしょうか?

長年にわたり、強力なパスワード、定期的なデータ バックアップ、多要素認証は、個人情報を安全に保つため...

サポートベクターマシンとニューラルネットワークが出会うとき: SVMとGANの距離の関係

SVM は機械学習の分野における古典的なアルゴリズムの 1 つです。 SVM をニューラル ネットワ...

AIとIoTが公共交通機関をよりスマートかつ安全に

スマート デバイスを通じてモビリティを向上させる人工知能 (AI) ソリューションは、買い物習慣から...

AI博士号取得者の年収は80万元。AI人材の需要と供給はどれくらいですか?

「女性は間違った男性と結婚することを恐れ、男性は間違った職業を選択することを恐れる」という古い中国...

IT の現状レポート: IT リーダーの 90% が、生成型 AI がまもなく主流になると考えています

7月25日、海外メディアの報道によると、セールスフォース・ドットコムが発表したIT現状報告によると、...

多くの機械学習戦略が失敗する理由

クラウド コンピューティング サービス プロバイダーの Rackspace Technology が...

...

...