データサイエンス技術の未来

データサイエンス技術の未来

[[361283]]

画像ソース: https://pixabay.com/images/id-4770296/

編集者: iothome

今日、世界はデータによって動かされており、ますます多くのデータが生成され、管理されるにつれて、データ サイエンスの未来は明るいものになりそうです。 2020 年末までに、平均的な人は 1 秒あたり 1.7 MB のデータを生成することになります。ビッグデータの規模は膨大で、日常生活のあらゆる側面に浸透しています。データのプライバシーも明確かつ目立つようになり、消費者はプライバシーの権利をより意識するようになりました。企業は現在、このインテリジェンスを賢く活用して顧客に効果的にアプローチしています。

今後、ビッグデータは重要なビジネス上の意思決定を推進する上で重要な役割を果たすでしょう。データ サイエンスのトレンドは、現代のヘルスケア、金融、政府の政策、ビジネス管理、マーケティング、製造、エネルギーを定義します。これにより、業界全体で熟練したデータサイエンスの専門家の需要が増加することになります。

この記事では、データサイエンスの将来のトレンドのいくつかを紹介します。

企業はテクノロジーの導入を優先し、データサイエンスの職が増加

組織におけるテクノロジーの重要性と採用は常に増加しており、そのため IT 関連の職種と役割の数も増加しています。米国労働統計局によると、コンピューターおよび情報技術分野の雇用機会は 2016 年から 2026 年の間に 13% 増加する見込みです。これは他のすべての職業の平均成長率を上回っており、データサイエンスのキャリア機会の成長が最も速いです。

LinkedIn の分析によると、データサイエンスの求人数は 2012 年以降 650% 以上増加しています。データサイエンティストが世界で最も需要のある職業の一つになったことは否定できません。企業におけるビッグデータに対する需要の高まりにより、データサイエンティストに対する需要が高まっています。

分析およびビジネス インテリジェンス ソリューションは、組織の目標を達成するための最も重要なテクノロジーになっています (2018 年の Gartner 調査による)。そのため、新しい人材を採用する際には、データスキルを常に最も求められる要素として位置付けています。

人工知能と機械学習が未来への道を切り開く

データ サイエンティストは、数多くの新時代のテクノロジーを活用する必要があります。データ サイエンティストが遭遇する最も影響力のあるテクノロジーは、人工知能と機械学習です。 AI はすでにビジネス機能と業務を改善しており、短期的にも長期的にも最も有望なトレンドの 1 つと考えられています。

データ サイエンスの分野では、AI は自動化されたソリューションを使用して大規模なデータ セットを検索し、より優れたビジネス上の意思決定を行うための洞察を得ています。デロイトの調査によると、9% の組織が、人工知能 (AI) が競合他社を上回る業績を上げるのに役立っていると考えています。

AI、機械学習、ディープラーニングなどの新時代のテクノロジーの利点とそのアプリケーションの実装は、データサイエンスの真の未来につながります。機械学習は、統計モデルの機能を開発し、時間の経過とともにパフォーマンスを向上させるのに役立ちます。また、プログラムされた指示に従う必要がなくなり、基本的な自動化の限界を超えて、より深いビジネス洞察を提供します。

モノのインターネットの急速な発展

2020年末までにIoTへの投資は1兆ドルに達すると予想されています。これは、スマートデバイスやコネクテッドデバイスの予想される成長を明確に示しています。家電製品を制御するための既存のアプリケーションやデバイスは、モノのインターネットの主流の例ですが、モノのインターネットの範囲ははるかに広範囲にわたるため、これは氷山の一角にすぎません。ユーザーが使用するスマートソリューションの背後にあるテクノロジーを認識していなくても、モノのインターネットは日常生活で重要な役割を果たします。 Alexa、Cortana、Google Assistant などのスマート デバイスを使用すると、家中の作業を簡単に自動化できます。近い将来、企業はデータサイエンスアプリケーションでの IoT の使用を増やし、IoT テクノロジーへの投資を増やすでしょう。

ビッグデータ分析は進化している

企業の主要な目標のほとんどは、効果的なビッグデータ分析を通じて達成され、企業に大きな競争上の優位性をもたらすことができます。 Python などのさまざまなツールとテクニックを使用してビッグ データを分析し、データから有意義な洞察とパターンを導き出すことができます。

さらに、特定のイベントがいつ、なぜ発生するかを特定することに重点を置く企業が増えています。ここで、予測分析が役立ち、現在の傾向を特定し、将来を予測します。

エッジコンピューティングの台頭

エッジ コンピューティングを最前線に導く上で、センサーが大きな役割を果たしています。この進歩は IoT の多くで継続し、主流のコンピューティング システムに取って代わるでしょう。エッジ コンピューティングは、データをソースの近くに保存し、リアルタイムで分析を実行する機会を提供します。

さらに、ビッグデータ分析には、より大きなネットワーク帯域幅とハイエンドのストレージ デバイスが必要です。エッジ コンピューティングは、ビッグ データ分析に効果的な代替手段を提供します。データを収集するデバイスの数は飛躍的に増加しており、その結果、帯域幅、遅延、接続性に関連する問題に対処するためにエッジ コンピューティングを採用する組織が増えています。

最後に、エッジ コンピューティングとクラウド コンピューティングを組み合わせることで、データの分析と管理に関連するリスクを軽減する同期インフラストラクチャが提供されます。

<<:  ロボットにあなたのことをもっと理解させるにはどうすればいいでしょうか?

>>:  データ構造とアルゴリズムの基本概念

ブログ    
ブログ    
ブログ    

推薦する

...

2020年に人工知能はどのように発展するでしょうか?知っておくべき6つのトレンド

過去1年を振り返ると、人工知能の発展は繁栄し、多彩なものであったと言えます。人工知能が3回連続で政府...

ChatGPT の背後にあるビッグモデル技術を 3 分で簡単に理解する

過去 10 年間で、人工知能の分野で大きな進歩が遂げられてきましたが、その中で自然言語処理 (NLP...

Dynatrace のフルスタック AI モニタリングは、企業が AWS クラウドで飛躍するのを助けます

2018 年 10 月 31 日、上海 - 世界有数のソフトウェア インテリジェンス企業である Dy...

将来のAIの世界における興味深い仕事

現在、人工知能 (AI) システムは反復的で非創造的なタスクを実行するのが得意ですが、スクリプトから...

...

人工知能はビジネスに大きな影響を与えます。AIは中小企業に5つの大きなメリットをもたらします。

市場のトレンドはどのくらいの速さで発展していますか? 特に人工知能に関しては。企業は驚くべき速度で ...

ガートナー:世界のAIチップの収益は2023年に530億ドル、2027年には1194億ドルに達する

8月24日、市場調査会社ガートナーの最新予測によると、 AI向けハードウェアの世界販売収益は2023...

ショック! Google がショウジョウバエの脳全体を自動で再構築: 40 兆ピクセルの画像が初めて公開されました。

昨日、Google はハワード・ヒューズ医学研究所 (HHMI) およびケンブリッジ大学と共同で、シ...

世界中で生産される食料の50%が毎年廃棄されている?

世界の食品サプライチェーンの複雑さには驚かされることがあります。何千万もの農場が何百万もの食料品店や...

監視設置技術の要素は何ですか

監視設置技術は、他の分野の技術を応用して自らのセキュリティ目的を達成するための技術です。では、監視設...

...

Googleがまた新しいことを始める: 視覚言語モデルに空間推論をさせる

視覚言語モデル (VLM) は、画像の説明、視覚的な質問応答 (VQA)、具体化された計画、アクショ...

AI+クラウドランディングBeifei Technology、Amazon Pollyの助けを借りて教育モードの変化を促進

[51CTO.comより引用] 時代のトレンドである最先端技術として、人工知能はニュースという形で人...