ディープマインドはニューラルネットワークを使ってシュレーディンガー方程式を解く物理学論文を発表した。

ディープマインドはニューラルネットワークを使ってシュレーディンガー方程式を解く物理学論文を発表した。

[[347629]]

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

シュレーディンガー方程式を解くだけで、分子の化学的性質を予測できます。しかし、現実は非常に厳しい。これまでのところ、科学者は電子が 1 つしかない水素原子についてのみ正確に解明でき、電子が 2 つしかないヘリウム原子についても無力である。

その理由は、2 つ以上の電子からなるシュレーディンガー方程式は複雑すぎて正確に解くことができないからです。

正確な解は存在しないため、科学者は結果が十分に近似している限り、原子や分子の挙動を予測できる実用的な近似解を見つけることを望んでいます。

最近、DeepMindは分子の電子的挙動を解くための「フェルミネットワーク」(FermiNet)をオープンソース化し、30個の電子を持つ有機分子に対して高い精度を達成した。論文の結果は「Physical Review Research」誌に掲載されました。

なぜフェルミネットワークと呼ばれるのでしょうか?

量子力学では、電子は正確な位置を持たず、波動関数から空間、つまり電子雲に電子が現れる確率を予測することしかできません。

例えば、水素原子の電子雲は次の形をとります。

表面の内側は電子が出現する確率が高い領域を表します。青い領域の波動関数は正であり、紫色の領域の波動関数は負です。 (注:波動関数の二乗は電子が出現する確率を表します)

分子のエネルギーは 0.5% 未満の誤差で予測できますが、化学者にとってはこれでは十分ではありません。分子の形状と化学的性質を正確に予測するには、0.001% の精度が必要であり、これはサッカー場の幅をミリメートルの精度で測定するのと同じです。

分子内の電子は原子核に引き付けられ、他の電子に反発されるだけでなく、量子力学のフェルミ・ディラック統計にも従います。つまり、2 つの電子が状態を交換すると、波動関数の符号が反転します。

これは、2 つの電子の状態がまったく同じになることはできないことも意味します。そうでない場合、波動関数は 0 になります。これは物理学では「パウリの排他原理」と呼ばれています。

フェルミネットワークはこの基本的な物理原理に基づいているため、DeepMind はこれを FermiNet と名付けました。

交換後は符号が反対になり、線形代数の行列式を思い出すかもしれません。行列式の任意の 2 つの行が入れ替わる場合、出力結果には -1 を掛ける必要があります。

物理学者もそう考えています。彼らはいわゆる「スレーター行列式」を使用して電子の波動関数を表現しますが、実際の状況はスレーター行列式よりもはるかに複雑です。電子の挙動をより正確に表現するには、何百万ものスレーター行列式の線形結合が必要になることがよくあります。

仕組み

関数の線形結合と比較すると、ニューラル ネットワークは複雑な関数を表現する場合に利点があることがよくあります。

FermiNet を構築する際、研究者はパウリの排他原理をニューラル ネットワークの第一原理として導入しました。

FermiNet では、各電子には個別の情報フローがあります。それだけでなく、ネットワークの各層のすべてのフローを平均化してから、次の層の各フローに渡します。このようにして、フローには正しい反対称性要件が満たされます。

さらに、FermiNet 行列式の各要素にはすべての電子が含まれており、これは波動関数に電子が 1 つしかない場合よりもはるかに効率的です。

スレーター行列式とは異なり、FermiNet は、ニューラル ネットワーク層が十分に広くなると真の波動関数に無限に近づくことができる汎用関数近似器です。

つまり、これらのネットワークを正しくトレーニングすれば、シュレーディンガー方程式にほぼ完全に正確な解を当てはめることができるはずです。

トレーニングは、システムのエネルギーを最小化して FermiNet をフィッティングすることによって行われます。 FermiNet は、モンテカルロ法を使用して電子配置をランダムに選択し、各電子配置のエネルギーを局所的に評価し、各配置の寄与を累積して最小化します。

実験結果

研究者らは、最大 10 個の電子を持つ原子に対して FermiNet を使用し、エネルギー精度は約 99.8% でした。

30電子シクロペンタジエンの場合、FermiNetは97%の精度でエネルギーを計算した。精度はそれほど高くないが、DeepMindは「安価だが精度が十分ではない」方法としては、これは大きな成果だと述べた。

FermiNet は GitHub でオープンソース化されました。コードは TensorFlow に基づいています。水素分子の計算に使用したい場合は、次のコードを試してみてください。

100 回の反復後、プログラムは水素原子の波動関数ファイルを出力します。公式の推奨では、GPU を使用して実行することが推奨されています。これは、8 つの GPU を使用してエチレン分子を計算するのに 2 日かかったためです。

DeepMind は、電子工学の研究に加えて、タンパク質の折り畳み、ガラス状態のダイナミクス、格子量子色力学などの他の基礎科学研究にもニューラル ネットワークを使用しています。

<<:  データ構造とアルゴリズム: グラフ構造

>>:  データセンターの物理的セキュリティに AI を活用する方法

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

利益予測はもはや難しくありません。Scikit-learn 線形回帰法を使用すると、半分の労力で 2 倍の結果を得ることができます。

1. はじめに生成 AI は間違いなくゲームを変えるテクノロジーですが、ほとんどのビジネス上の問題...

人工知能の未来を説明する15の統計

[[206292]]人工知能は非常に人気があり、それに対して楽観的な人もいれば、悲観的な人もいます。...

中国科学院研究員蔡少偉:SATソルバーEDA基本エンジン

[[441194]]この記事はLeiphone.comから転載したものです。転載する場合は、Leip...

人工知能時代のデータストレージの未来

2024 年は、テクノロジーとデータの状況に大きな変化が起こる年になると予想されています。生成 AI...

コンテンツ管理と AI – ContentOps の未来

人工知能 (AI) は、退屈な日常的な作業を一つずつこなして世界を席巻しています。 AI を使用して...

劉強東:人工知能の時代が来ています。このチャンスをつかめば、あなたは豊かになれます。

劉強東は言った。「この世で働かずに得られる唯一のものは貧困であり、無から創造できる唯一のものは夢であ...

AI業界の「第2の成長曲線」を牽引する清華大学傘下のRealAIが第3世代のAI製品をリリース

12月9日、清華大学人工知能研究所、北京市知源人工知能研究所、北京市瑞来スマートテクノロジー株式会社...

一枚のポートレートからビデオを生成しましょう!中国チームが3D顔動画生成モデルを提案、SOTAを達成

[[417461]]人間の顔を使って面白いビデオを生成するにはどうすればいいでしょうか? [[417...

絶対確実な協働ロボット

人間とロボットが協力して協働ロボットを作る[[321860]]協働ロボットは人間と対話し、協働するよ...

ロボット犬をDIYするにはどれくらいの費用がかかりますか?価格は900ドルと安く、スタンフォード大学が開発し、コードはオープンソースです

たった 900 ドルで四足ロボット犬を DIY できる?スタンフォード学生ロボットクラブの新メンバー...

...

私の国のロボット市場は活況を呈しているが、人材と技術的な問題はまだ解決する必要がある。

「スマート+」時代の到来とともに、人工知能、5G、モノのインターネット、ビッグデータなどの技術が徐...

いくつかの小さな図でディープラーニングを徹底的に説明します

Andrew Ng 氏は、Tess Ferrandez 氏が修了したディープラーニング特別コースのイ...

ディープラーニングを使って夢に現れる物体を分析する(完全版)

[[197493]]この記事の主な内容は機械学習と神経科学を組み合わせたものであり、読者にはこれら...