機械学習ツールが肺のX線スキャンで心不全を予測

機械学習ツールが肺のX線スキャンで心不全を予測

この研究は、MIT のコンピューター科学および人工知能研究所 (CSAIL) で実施され、医療診断を変革している他の多くの有望な機械学習および AI ツールと一致しています。現代のコンピューティングの力により、これらのアルゴリズムは医療画像データを調べ、臨床医が見ることができない人間の状態の微妙だが重要な変化を発見することができ、刺激的な可能性を切り開きます。

それは、CTスキャンでは見逃されていた癌の診断を発見したり、医師が気づく何年も前にアルツハイマー病の兆候を検出したりすることを意味するかもしれない。この研究では、人工知能を使用して心電図の結果を分析することで、左室機能不全を特定し、心不全のリスクが最も高い患者を医師が特定できるかどうかも調査しており、今回の研究も、異なるメカニズムに焦点を当てながらも同様の道をたどった。

医師は肺のX線画像を使用して、心不全のリスクがある患者の体液蓄積(「肺水腫」と呼ばれる)の重症度を評価し、治療方針を決定します。問題は、これらの評価が、非常に微妙な特徴に基づいて行われることが多く、一貫性のない診断や治療計画につながる可能性があることです。

[[344874]]

機械学習を導入するために、チームは30万枚以上のX線画像と放射線科医が作成した対応するレポートでアルゴリズムをトレーニングしました。これには、多くのサンプルにわたってデータが一貫して分析されるようにするための特定の言語ルールの開発が含まれます。

「私たちのモデルは、画像とテキストの両方を、説明を導き出すことができるコンパクトなデジタル抽象化に変換することができます」と、論文の共同筆頭著者であるギーティカ・チャウハン氏は述べた。 「私たちは、X線画像と放射線レポートのテキスト間の表現の違いを最小限に抑えるようにトレーニングし、レポートを使用して画像の解釈を改善しました。」

研究によると、新しい機械学習アルゴリズムは、重度の肺水腫の症例を高い精度で分類できることが示されています。テストでは、研究チームは機械学習アルゴリズムを使用して単一のX線画像を分析し、浮腫の重症度を0(健康)から3(非常に重度)のスケールで分類しました。このアルゴリズムは、浮腫の正しいレベルを半分以上の確率で診断できましたが、さらに印象的なのは、グレード 3 のケースを 90 パーセントの確率で正確に診断できたことです。

研究者たちは、このツールが医師による心臓疾患の管理改善に役立つことを期待しているが、浮腫は敗血症や腎不全などさまざまな病状に関連しているため、このアルゴリズムの可能性はさらに広がる可能性がある。研究者らは現在、今後数か月以内にボストンの医療センターの救急治療室のワークフローにこのツールを統合する作業を進めている。

<<:  5歳の子供がAIを圧倒、「遊ぶ」だけで十分か?

>>:  精密人工知能:原子核物理学と素粒子物理学における新たな力

ブログ    

推薦する

2021年に注目すべき5つのAIトレンド

[[392513]] 2020年にCOVID-19が世界的に猛威を振るう中、人々は人工知能技術の助け...

Meili United のビジネスアップグレードにおける機械学習の応用

一般的に、機械学習は電子商取引の分野では、推奨、検索、広告の 3 つの主要な用途があります。今回は、...

孫正義:今後30年の人工知能とモノのインターネット

これは非常に興味深いスピーチです。これは、MWC 2017でソフトバンクの孫正義氏が行ったスピーチで...

Google AI、眼球スキャンから心臓病リスクを予測可能

グーグルと、同じくアルファベットグループの健康関連子会社であるベリリー・ライフ・サイエンシズが共同で...

相関関係は因果関係ではない。ディープラーニングによりAIは「10万のなぜ」を問うことができる

[[274938]]ビッグデータダイジェスト制作出典: searchenterpriseai編纂者:...

ローコード プラットフォームに関する不完全な推奨事項!

ソフトウェア開発者向けのローコード機能それでは、ソフトウェア開発者に機械学習機能を提供するローコード...

Caffeでのディープラーニングトレーニングの全プロセス

[[189573]]今日の目標は、Caffe を使用してディープラーニング トレーニングの全プロセス...

警察ドローンの数十億ドル規模のブルーオーシャンをどう実現するか?今後はこの3点に注目してください!

近年、飛行制御、ナビゲーション、通信などの技術の継続的な発展に伴い、ドローン産業は急速な成長を遂げて...

IoTとAIのトレンドが今日のビジネスに及ぼす影響

IoT と AI の誇大宣伝サイクルは、企業が大きな価値を認識し始める段階まで進んでいます。 IoT...

今日のアルゴリズム: 文字列内の単語を反転する

[[423004]]文字列が与えられたら、文字列内の各単語を 1 つずつ逆にします。例1:入力: 「...

人工知能≠ロボット!

[[379103]]技術革新が時代のメインテーマとなる中、 「自動運転がドライバーに代わる」「仕事...

Julia vs Python: 2019 年に機械学習でナンバー 1 になるプログラミング言語はどれでしょうか?

[[252207]] [51CTO.com クイック翻訳] Juliaは2018年に登場し、現在最...

分散ストレージシステムにおけるDHTアルゴリズムの改善

1. 概要通常、分散ストレージ システムや分散キャッシュ システムでは、分散ハッシュ (DHT) ア...

Nature の調査: AI が「必需品」になったと考える科学者はわずか 4%

AI に関する論文数は劇的に増加していますが、本当に AI が「必須」であると考えている研究者はわ...

並列コンピューティングの量子化モデルとディープラーニングエンジンへの応用

この世で唯一負けない武術はスピードだ。ディープラーニング モデルをより速くトレーニングする方法は、常...