マルチモーダルディープラーニング:ディープラーニングを用いてさまざまな情報を統合する

マルチモーダルディープラーニング:ディープラーニングを用いてさまざまな情報を統合する

ディープラーニングを使用して、さまざまなソースからの情報を統合します。

マルチモーダルデータ

私たちの世界に対する経験はマルチモーダルです。つまり、私たちは物を見て、音を聞き、質感を感じ、香りを嗅ぎ、味を味わいます。モダリティとは、何かが起こる方法や経験される方法を指し、研究課題が複数のモダリティを包含する場合、それはマルチモーダルとして特徴付けられます。 AI が私たちの周囲の世界を理解する上で進歩を遂げるためには、これらのマルチモーダル信号を同時に解釈できる必要があります。

たとえば、画像はラベルやテキストによる説明と関連付けられることが多く、テキストには記事の中心的なアイデアをより明確に表現するための画像が含まれます。モードによって統計特性が大きく異なります。

マルチモーダルディープラーニング

異なるモダリティや情報タイプを組み合わせて効果を高めることは直感的には魅力的な作業ですが、実際には、異なるノイズ レベルやモダリティ間の競合をどのように組み合わせるかが課題となります。さらに、モデルは予測結果に異なる定量的な影響を及ぼします。実際に最も一般的なアプローチは、異なる入力の高レベルの埋め込みを連結し、ソフトマックスを適用することです。

異なるタイプのニューラル ネットワークを使用して特徴を抽出するマルチモーダル ディープラーニングの例。

このアプローチの問題点は、すべてのサブネットワーク/パターンに同等の重要性を与えることですが、これは現実のシナリオではほとんど起こりません。

すべてのモードが予測に等しく貢献する

ネットワークの重み付け組み合わせ

各入力モダリティが出力予測に対して学習された貢献 (Theta) を行えるように、サブネットワークの加重組み合わせを採用しています。

最適化の問題は次のようになります。

各サブネットワークに Theta 重みを与えた後の損失関数。

サブネットワークに重みを付けた後の出力を予測します。

全部使ってください!

正確性と解釈可能性

私たちは、2 つの現実世界のマルチモーダル データセットで SOTA を達成しました。

マルチモーダル感情強度コーパス (MOSI) データセット - 1 ミリ秒ごとに音声特徴が注釈付けされた 417 本の注釈付きビデオ。注釈付きのデータ ポイントは合計 2199 個あり、感情の強さは -3 から +3 までの線形スケールを使用して、非常に否定的から非常に肯定的まで定義されます。

モードには次のものがあります:

1. テキスト

2. オーディオ

3. 言語

各モダリティの感情予測への貢献

転写開始部位予測 (TSS) データセット - 転写は遺伝子発現の最初のステップであり、特定の DNA セグメントが RNA (mRNA) にコピーされます。転写開始部位は転写が始まる場所です。 DNA 断片のさまざまな部分には、その存在に影響を与えるさまざまな特性があります。 TSS は 3 つの部分に分かれています。

  1. 上流DNA
  2. 下流DNA
  3. TSS の場所

これまでの最先端の結果と比べて 3% という前例のない改善を達成しました。 TATA ボックスの下流の DNA 領域がこのプロセスに最も大きな影響を与えます。

<<:  国際数学オリンピック連続優勝、基礎学問の科学技術戦略価値の分析

>>:  人工知能が詩を書きました。この詩の知的財産権は誰が所有しているのでしょうか?

ブログ    

推薦する

大規模モデルで長いテキストを評価する方法: 4 つの主要な評価データセットのタスク設計とデータセット構築ソリューション

大規模言語モデル (LLM) は、さまざまな言語タスクで優れたパフォーマンスを発揮するにもかかわらず...

...

基本モデル + ロボット: これまでどこまで進んだのでしょうか?

ロボット工学は、特にスマートテクノロジーと組み合わせると、無限の可能性を秘めたテクノロジーです。近年...

SelfOcc: 純粋な視覚に基づく初の自己教師あり 3D 占有予測 (清華大学)

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

蘇州の路上には自動運転バスが走っている。これは試験運行ではない。市民は無料で乗車できる。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

とても早いですね!わずか数分で、10行未満のコードでビデオ音声をテキストに変換します。

みなさんこんにちは。私はFeng Kiteですオーディオおよびビデオ ファイル内のオーディオをテキス...

DAMOアカデミーは、初めて半教師あり知識注入を使用して、新しい事前トレーニング済み対話モデルを立ち上げ、大幅な改善を達成しました。

ディープラーニングの急速な発展に伴い、テキスト分類、感情分析など、学術界では毎年多くの高品質な注釈付...

毎日のアルゴリズム: 有効な三角形の数

[[429712]]この記事はWeChatの公開アカウント「3分でフロントエンドを学ぶ」から転載した...

Nature: 光コンピューティングと AI 推論を統合して高速かつ高帯域幅の AI コンピューティングを実現

電子コンピューティングと比較すると、光コンピューティングは高速、高帯域幅、低消費電力という利点があり...

エッジAIの夢と課題

この記事では、AI を「小型マシン」に実装する根拠と、AI 小型マシンの開発で直面する課題という 2...

食糧生産・供給システムの改善 — AI が担う時代へ!

[[344152]] 人工知能は私たちの世界を急速に、さらには加速的に変えつつあります。しかし、そ...

人工知能はサイバーセキュリティにとって役立つのか、それとも脅威となるのか?

企業に対するセキュリティ上の脅威は常に存在していましたが、インターネットの発展により、脅威は物理空間...

...

...

よく使われる「生成AIフレームワーク」を1つの記事で理解する

こんにちは、皆さん。私は Luga です。今日は、人工知能 (AI) エコシステムに関連するテクノロ...