仮想現実や人工知能などのテクノロジーが人体とどのように統合されるかを探ります。将来、仮想現実と現実の境界を曖昧にする VR 機器が登場するのでしょうか? AI は人間の脳の活動を完全に再現できるのでしょうか?
記事の主な内容は次のとおりです。 「人間」と「機械」の間のギャップは縮まっています。機械学習により、仮想現実 (VR) はこれまで以上に「リアル」になり、人工知能 (AI) はかつては人間の脳に限定されていた活動を再現する能力を絶えず向上させています。これら 2 つのテクノロジーを組み合わせることで、テクノロジーが人体にさらに近づきます。すべてがますます信じられないほどになってきています。 将来、彼らはさらに素晴らしい存在になるでしょう。 こんな質問をしてみましょう。VR で Minecraft の大聖堂の端に立つのは、現実世界でノルウェーの山の端に立つよりも怖いでしょうか? 私は両方を体験しましたが、前者の方が怖いと感じました。 私たちの脳は、私たちが住む世界を理解し、遺伝子の生存を最適化する決定を下せるように進化しました。たとえば、高所恐怖症は、注意しないと落下して死ぬ可能性があるため、高い場所の端に近づいてはいけないという知覚的理解の結果です。 実際には、私たちが見ているのは、目から入力されたデータを脳が解釈したものです。私たちが見ているのは現実ではなく、私たちが有用だと判断するように進化してきた現実の一部に対する脳の解釈です。 「見る」ことを「何を見るか」に変換する方法を理解することで、VR の幻想は現実そのものよりもリアルに感じられるようになります。たとえば、Minecraft の山とノルウェーの山の違いなどです。 人類が VR 大聖堂の頂上のようなものを実存的リスクとして認識するのをやめるには、長い時間がかかるだろう。今後数年間、私たちは脳に特定の解釈を誘導できる技術の開発も続けていきます。 同時に、脳に対する理解も深まり続けるでしょう。神経可塑性に関する現代の研究では、脳の一部を再訓練して、機能しなくなった部分を置き換えることができることがわかっています。理解が深まるにつれ、さまざまな人工刺激の動作をプログラム的に微調整して、現在の VR で可能なものよりもはるかに器用な手を作成できるようになるかもしれません。 こうした種類の聴覚トリックは、スマートヘッドフォンやサウンドソフトウェアの新しい波に登場しています。 Oculus が最近リリースしたヘッドセットは、ユーザーに完全な没入感を与えることに重点を置いていますが、もともと H__r と呼ばれていたアプリは、サウンド フィルタリングを試みて、背景のノイズを調和のとれたサウンドに変換します。 「人工嗅覚の専門家」を自称するeNose社は、人間の鼻の機能を再現する技術を開発した。この技術の応用としては、肺の健康の促進や、探知犬の代替などが挙げられる。 こうした進歩を考えると、VR ギア一式 (ヘルメット、ヘッドフォン、手袋、さらには鼻と口のセンサー) によって仮想現実と現実そのものの境界が完全に曖昧になる未来を想像するのは難しくありません。 実際、仮想体験は、特に記憶シナプスを強化する脳内の化学物質を刺激する方法が見つかれば、現実の体験では得られない感覚体験を提供できる可能性があります。おそらく、「トランセンデンス」や VR ポッド (「マイノリティ・リポート」) の要素はそれほど突飛なものではないだろう。 AIの役割 こうした技術の進歩の結果、テクノロジーは私たちの身体にさらに密接に統合されるようになっています。しかし、テクノロジーと人体の相互作用は VR で終わるわけではありません。人工知能を組み合わせると、この相互作用はさらに興味深いものになります。 AIは脳の活動を機械内で再現しようとするからです。 技術者たちは何十年もの間、脳に関する理解を活用して、極めて複雑で非線形な問題を解決できるアルゴリズムを構築しようと努めてきました。コアアルゴリズムとインテリジェント組織の進歩、および純粋な計算能力の向上により、近年、さらに大きな進歩が遂げられています。 汎用 AI (脳全体のパターンを再現する) の実現にはまだまだ遠い道のりであり、そこに到達するかどうか、またいつ到達するかは不明です。一つの制約は、人間の脳を複製する機械を作るためには、人間の脳を完全に理解する必要があるということです。 画像認識や言語学習など、さまざまな脳の活動を研究することで、それらの活動がどのように機能し、どのように学習するかを理解できます。脳のアルゴリズムは、学習プロセスを完了するために、多くの類似のものを見る必要があるのでしょうか? それとも、脳のアルゴリズムには自律的に学習する能力があるのでしょうか? 言い換えると、脳のアルゴリズムは「教師あり」ですか、それとも「教師なし」ですか? 今後数年間、真に教師なしの AI を開発することは、業界に積極的に参入してきたテクノロジー大手 (多数の買収などを通じて) を含む実務者にとって課題であり続けるでしょう。 |
<<: 将来、音声認識はどのような商業シナリオに適用される可能性がありますか?
コンピュータの問題解決のプロセスにおいて、データ構造とアルゴリズムはプログラムの 2 つの主要要素で...
ここ2日間で、オープンソースの話題が再び人気を集めています。 「オープンソースがなければ、AI は何...
私たちが日常生活で使用する推奨システム、インテリジェントな画像美化アプリケーション、チャットボットな...
[[415675]]都市化が継続的に加速し、都市人口が継続的に増加したことで、人々は質の高い都市生活...
過去2023年間で、大規模言語モデル(LLM)は潜在力と複雑さの両面で急速に成長しました。 2024...
[51CTO.comからのオリジナル記事] 1930年代初頭、フランスの科学者GBアルチュニは翻訳に...
TensorFlow 入門記事: 初心者でも理解できる TensorFlow 入門小学校で受けた理...
昨年、最も人気があったトラフィックスターはGPT-3でした。GPT-3は質問に答えたり、記事を書いた...
データ中心のエンジニアにとって、Python と R はデータセンターで最も人気のあるプログラミング...
機械学習におけるすべての研究は、ニューラル ネットワークの作成とともに 1950 年代の初期の研究以...