音声認識が検索ボックスに取って代わり、人工知能が3つの主要な応用分野で主導権を握る

音声認識が検索ボックスに取って代わり、人工知能が3つの主要な応用分野で主導権を握る

マイクロソフトのレドモンド研究所の副社長であるデュメイス氏は、ディープラーニング技術が2017年にオンライン検索結果の向上に役立つと考えている。2027年までに検索ボックスは消え、「ユビキタスで埋め込み型のコンテキスト認識型」検索に置き換わるだろう。

音声認識が検索ボックスに取って代わり、人工知能市場には明るい未来が待っている

「インターネットの女王」メアリー・ミーカーは、2016年のインターネットトレンドレポートで同様の見解を示しました。彼女は音声検索技術を将来の重要な技術トレンドの1つとして挙げ、将来のコンピューティングインターフェースはキーボードからマイクとキーボードモードにアップグレードされるだろうと述べました。

[[185876]]

以前は、検索ボックスはインターネットに入るための重要な入り口でした。音声認識というより便利なヒューマン・コンピュータ・インタラクション技術の出現により、検索ボックスの地位は徐々に置き換えられ、最終的には消滅するでしょう。

人工知能(AI)が発展のトレンドとなっていることが改めて確認され、音声認識技術は人工知能の重要な技術手段となっています。業界団体は、世界の音声認識市場規模は2015年に約61億9,000万米ドルとなり、2020年までに200億米ドルに近づくと予測しており、人工知能市場全体は2018年に1,800億米ドルに達すると見込まれています。

AIの可能性は限られており、3つの主要な応用分野が主導権を握っている

Google AlphaGoとイ・セドルの人間対機械の戦い、そしてそれに続く百度の無人運転車、捜狗機械翻訳、アリババクラウドの小型AIロボットなどの製品の登場により、機械のIQは人間に劣らず、むしろ優れている可能性があることがわかりました。

しかし、人工知能の分野には解決が難しい問題点があります。それは、脳を集中的に使う分野ほど人工知能のパフォーマンスが向上するのに対し、低レベルの感覚運動技能は人工知能による計算を大量に必要とするため、完成がより困難になるということです。

たとえば、ロボットにとって、テーブルの上を掃除するよりも彗星の正確な軌道を計算する方が簡単です。これは、摩擦、接触、衝突の仕組みが本質的に複雑であるためです。

上記の問題点により、人工知能の応用は制限されます。現段階では、この技術は、AIアシスタント、金融、医療診断など、「実践」よりも「思考」の分野でより価値があります。

AIアシスタント

AIアシスタントは主にスマートデバイス上で使用され、携帯電話のユーザーや周囲の環境に関するデータに基づいてユーザーにサービスを提供します。現在の応用分野はスマートホームが中心ですが、将来的には無人運転などの分野でも活用される可能性があります。

2016年、大手テクノロジー企業はAIアシスタントの分野の開発に急いで取り組みました。 Apple の Siri が MacBook で利用できるようになりました。Amazon の Alexa は Echo スピーカーの力を借りて家庭用市場に参入しています。Microsoft の Cortana は Android 版と iOS 版を継続的に更新しています。Google Assistant が復活しました。Samsung は仮想アシスタント企業 Viv を買収し、新たな動きを準備しています...

テクノロジー大手の綿密な計画により、AI アシスタントは市場でますます人気が高まっており、この傾向は 2017 年も続くでしょう。

AI財務管理

Sinovation Ventures の CEO である Kai-Fu Lee 氏は、人工知能アプリケーションの 3 つの要素はデータ、データ処理能力、ビジネス パフォーマンスであると考えています。これら 3 つの点に基づくと、金融は AI に最も適した適用シナリオです。

人工知能は金融技術の発展を促進します。例えば、顔認識や虹彩認識技術は、インターネット金融セキュリティの分野で大いに役立つでしょう。

もちろん、最も期待されているのは、AIが金儲けに使われることです。銀行は機械学習技術を基盤として、高度にカスタマイズされたサービスを顧客に効率的に提供できるほか、顧客に財務アドバイスを提供するファイナンシャルアドバイザーとしての役割も果たすことができます。

AI診断

Google は、医療機関のデータベースの助けを借りて、眼科医が患者を診察する方法と同等かそれ以上の方法で、患者の糖尿病網膜症の兆候を検出できるディープラーニング アルゴリズムを開発しています。 Google は、この技術によって、医療資源が限られている地域で医師がより多くの患者を検査できるようになることを期待している。

ディープラーニングと認知解析技術をベースに、人工知能と医用画像を組み合わせることで、未来の医療の発展に貢献します。例えば、患者はより早く健康診断を完了し、正確な診断結果を得ることができるようになり、医療機関は誤診率を減らし、医療費を体系的に削減できるようになります。

さらに、AIをウェアラブルデバイスと組み合わせることで、医療用ウェアラブルデバイスの迅速な導入を促進し、医療機器に革命をもたらすこともできます。

<<:  音声インターフェース:私たちはインタラクションの次の時代の瀬戸際にいる

>>:  手術ロボットには依然としてリスクがあり、人工知能技術の応用は成熟する必要がある

ブログ    
ブログ    

推薦する

...

サイバーセキュリティにおける人工知能:現在の課題と将来の方向性

人工知能 (AI) はあらゆる分野に革命をもたらしましたが、サイバーセキュリティも例外ではありません...

手書きの最も単純なLRUアルゴリズム

1 LRUとは何かLRU (Least Recently Used) は、最も最近使用されていないデ...

もしかしたら「スパイ」していたのかもしれません!大規模モデルのプライバシー推論精度は 95.8% です。

Reddit のユーザーが通勤に関するステータスを投稿しました。通勤途中に、曲がり角を待つ厄介な交...

興味深く実用的なオープンソース人工知能プロジェクトトップ10

皆さんは多くの人工知能プロジェクトを見たり使用したりしたことがあると思いますが、そのほとんどは非常に...

...

データガバナンスとビッグモデル統合の実践

コスト削減と効率向上の観点から、機械学習チームの構成を例に挙げ、Dipu TechnologyのDe...

調査:消費者の68%がスマート家電がプライベートな会話を盗聴できると考えている

PCMag が調査を実施したところ、ユーザーの 68% が、さまざまなスマートホーム製品が知らないう...

...

5GとAIの強力な組み合わせは、どのような新たな機会をもたらすのでしょうか?

[[261281]]新興技術への投資家として、私は既存の市場を改善したり、新しい市場を創出したりで...

ロボット工学と自動化は医療業界にどのような影響を与えるでしょうか?

ヘルスケアにおけるロボット工学と自動化は業界を変革し、精度、効率、患者ケアを向上させました。これらの...

...

...

...