機械学習エンジニアとデータサイエンティストの戦い

機械学習エンジニアとデータサイエンティストの戦い

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discovery)から転載したものです。

人工知能の発展により、市場にはいくつかの新しい仕事が生まれています。しかし、私たちの多くにとって、これらの新興分野における新たなキャリア、特に機械学習エンジニアとデータサイエンティストの役割の違いを見分けるのは難しく、混乱を招きます。

[[334134]]

さまざまな記事やブログを読み、いくつかのビデオを見た後、比較することで両者の違いをより明確に説明したいと思いました。

まずは例え話をしてみましょう。作家と教授の違いは何でしょうか? 両者とも言語の「ルールと文法」を知っており、一方はストーリーテラーであり、もう一方は「ルール」を厳密に実践する人であると言えます。

データ サイエンティストは、生データを処理および分析し、点と点を結び付け、その他の視覚化ツールを使用してストーリーを伝えます。彼らは通常、幅広いスキルセットを持ち、1 つまたは 2 つの分野についてのみ深い知識を持っています。彼らは芸術家のように創造性に傾倒しています。

機械学習エンジニアは、データを、取り込んで適切な形式で効率的に出力する必要があるものと見なします。実装の詳細に関して、彼らのスキルは効率的である必要があります。

両者の間には多くの重複があるかもしれませんが、データ サイエンティストは機械学習エンジニアになることができますが、その逆はあり得ません。おそらく、より多くの経験を積むにつれて、機械学習エンジニアはデータサイエンティストであるという考えが現実になるだろう。

機械学習とデータサイエンスのベン図

データ サイエンスには、洞察力や学習に関してある程度のビジネス感覚を持つ人材が必要ですが、機械学習には、システム予測に関してある程度のビジネス感覚を持つ人材が必要です。例えば:

  • データサイエンス: 「この地区には、約 2 マイルごとにガソリンスタンドがあります」
  • 機械学習: 「ガソリンスタンドを見つけてから 2 マイル歩いたので、今度は別のガソリンスタンドを探し始める必要があります」

Netflixの例を見てみましょう。

Netflix が過去の選択に基づいて賢く映画を推奨していることは誰もが知っています。このレコメンデーション システムは機械学習アルゴリズムと連携して、レコメンデーション システムを使用して適切な映画の選択肢を提供します。

Netflix のデータ サイエンスについて話すとき、私たちが研究するパターンには、特定の時間に視聴しているレビューアーの数、年齢と性別の構成、その他多くのことが含まれます。これらの決定はビジネスの見通しを改善するために使用されます。企業が質問に答えたり問題を解決したりするためにデータを必要とするとき、生の非構造化データから有用な洞察を提供するのがデータ サイエンティストの仕事です。

データサイエンティストに必要なスキル:

  • 統計
  • データマイニングとクリーニング
  • データの視覚化
  • 非構造化データ管理技術
  • RやPythonなどのプログラミング言語
  • SQL データベースを理解する
  • Hadoop、Hive、Pigなどのビッグデータツールを使用する

機械学習エンジニアに必要なスキル:

  • コンピュータサイエンス財団
  • 統計モデリング
  • データ評価とモデリング
  • アルゴリズムを理解して適用する
  • 自然言語処理
  • データアーキテクチャ設計
  • テキスト表現技術

上記からわかるように、データ サイエンティストと機械学習エンジニアの仕事は依然として大きく異なります。混同しないでください。自分のスキルと個人的な興味に最も適したポジションを判断し、将来に備えて特定の方向に意識的にスキルを伸ばしてください。

<<:  トニー先生に別れを告げる:海外の専門家が流行中に独自の美容ロボットを製作

>>:  MIT、Wikipedia の更新、間違いの修正、偽ニュースの特定を行う AI 編集システムを開始

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

専門家の視点丨Hua Xiansheng:人工知能:それは風か、雲か、それとも雨か?

[[395002]] 01 人工知能の3つのピーク人工知能の発展は3つのピークを経験しました。最初...

AI研究 | 陸宇:人工知能はオンライン教育を改善する大きな可能性を秘めている

工業情報化部科学技術庁は、感染予防・抑制に努め、感染拡大を阻止するために、「人工知能の力を十分に発揮...

世界各国の人工知能の配置をご存知ですか?

[[207472]]人工知能は未来をリードする戦略技術です。世界の主要先進国は人工知能の発展を国家...

IBMのレポートは、ショッピングにおけるAIへの消費者の関心を強調している

小売業界は、経済の逆風と消費者の期待の高まりによる圧力の増大に直面しています。消費者のニーズと現在の...

チンチラの死: 十分に訓練すれば小型モデルでも大型モデルを上回る性能を発揮できる

2022年3月、DeepMindの論文「計算最適化大規模言語モデルのトレーニング」では、構築されたC...

詳細な分析: AI がイノベーションを容易にする方法

開発手段。イノベーションの結果は、企業が市場のニーズを満たす新製品を継続的に設計・生産することを奨励...

...

ディープラーニングへの扉を開くのに10分、コードはオープンソース

[[274072]]この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI...

AI インフラストラクチャ スタックをわかりやすく解説し、AI プロジェクトをより迅速に展開

[51CTO.com クイック翻訳] 多くの企業が AI への投資を増やすにつれて、開発者とエンジニ...

AI向けに構築されたコンピューターに最適なアクセサリと外部コンポーネント

[[435844]]人工知能用に構築されたコンピュータ システムに最適なアクセサリとコンポーネントは...

AIデータのラベル付けは大量にアウトソーシングされており、南アフリカ、ベネズエラなどの国の人々はデジタル搾取の運命から逃れられない

歴史的に、これらの国や地域は旧植民地帝国によって貧困化しており、ヨーロッパの植民地主義は土地の暴力的...

...

Alibaba Cloud がバッチおよびストリーム機械学習プラットフォーム Alink をオープンソース化し、アルゴリズム開発のハードルを下げる

11月28日、アリババクラウドは、世界初の統合バッチ・ストリームアルゴリズムプラットフォームでもある...

...

表現学習: 自然言語のための高度なディープラーニング

表現学習では、半教師あり学習と自己教師あり学習の特定の機能を通じて、モデルのトレーニングに必要なデー...