知っていましたか? LeNet 畳み込みニューラル ネットワークは iOS デバイス上で直接トレーニングすることもでき、パフォーマンスもまったく悪くなく、iPhone や iPad を実際の生産性に変えることもできます。 モバイル端末への機械学習の応用は、一般的に次の 2 つの段階に分けられます。第 1 段階はモデルのトレーニングであり、第 2 段階はモデルの展開です。従来のアプローチでは、強力な GPU または TPU でモデルをトレーニングし、一連のモデル圧縮方法を使用して、モバイル デバイスで実行できるモデルに変換し、APP に接続します。 Core ML は主にモデル展開の最終ステップを解決します。開発者に便利なモデル変換ツールを提供し、トレーニング済みのモデルを Core ML タイプのモデル ファイルに簡単に変換して、モデルと APP データ間の相互運用性を実現します。 上記は通常の動作です。しかし、iOSデバイスのコンピューティング性能が向上するにつれて、iPad Proのコンピューティング能力は一般的なラップトップのそれを上回るという噂もあります。その後、「勇敢な人」が現れ、iOS デバイス上で直接ニューラル ネットワークをトレーニングできるプロジェクトをオープンソース化しました。 プロジェクト作成者は、macOS、iOS シミュレーター、実際の iOS デバイスでテストしました。 60,000 MNIST サンプルで 10 エポックのトレーニングを行いました。モデル アーキテクチャとトレーニング パラメータがまったく同じという前提で、Core ML を使用して iPhone 11 でトレーニングすると約 248 秒、TensorFlow 2.0 (CPU のみ使用) を使用して i7 MacBook Pro でトレーニングすると 158 秒かかりますが、精度は 0.98 を超えています。 もちろん、248 秒と 158 秒の間にはまだ大きな差がありますが、この実験の目的は速度を比較することではなく、モバイル デバイスやウェアラブル デバイスを使用したローカル トレーニングの実現可能性を探ることです。これらのデバイス内のデータは機密性が高くプライバシーに関わることが多く、ローカル トレーニングの方がセキュリティを強化できるためです。 プロジェクトアドレス: https://github.com/JacopoMangiavacchi/MNIST-CoreML-Training MNISTデータセット この記事では、MNIST データセットを使用して画像分類モデルを展開する方法を紹介します。この Core ML モデルは、事前に他の ML フレームワークでトレーニングする必要がなく、iOS デバイス上で直接トレーニングされる点が注目に値します。 ここで著者は非常に有名なデータセット、MNIST 手書き数字データセットを使用しました。 60,000 個のトレーニング サンプルと 10,000 個のテスト サンプルが提供され、それらはすべて 0 から 9 までの手書きの数字の 28 x 28 の白黒画像です。 LeNet CNN アーキテクチャ CNN の詳細と利点を理解したい場合は、LeNet アーキテクチャが適切な出発点となります。 LeNet CNN + MNIST データセットの組み合わせは、機械学習の「トレーニング」の標準的な組み合わせであり、ディープラーニング画像分類の「Hello, World」にほぼ相当します。 この投稿では、iOS デバイス上で直接、MNIST データセット用の LeNet CNN モデルを構築およびトレーニングする方法に焦点を当てています。次に、研究者らはこれを、TensorFlow などの有名な ML フレームワークに基づく従来の「Python」実装と比較します。 Swift で Core ML トレーニング用のデータを準備する Core ML で LeNet CNN ネットワークを作成してトレーニングする方法について説明する前に、まず MNIST トレーニング データを準備して Core ML 実行に適切にバッチ処理できるようにする方法を見てみましょう。 次の Swift コードでは、MNIST データセット専用のトレーニング データのバッチが用意されており、各画像の「ピクセル」値を、初期範囲の 0 ~ 255 から「理解可能な」 0 ~ 1 の範囲に単純に正規化します。 Core ML モデル (CNN) トレーニングの準備 トレーニング データのバッチを処理および正規化した後、SwiftCoreMLTools ライブラリを使用して、Swift の CNN Core ML モデルで一連のローカル準備を実行できるようになります。 次の SwiftCoreMLTools DSL 関数ビルダー コードで、同じものが Core ML モデルに渡される方法も確認できます。同時に、損失関数、オプティマイザー、学習率、エポック数、バッチ サイズなどの基本的なトレーニング情報とハイパーパラメータも含まれます。 Adam オプティマイザーは、次のパラメータを使用してニューラル ネットワークをトレーニングするために使用されます。 次のステップは、CNN ネットワークを構築することです。畳み込み層、活性化層、プーリング層は次のように定義されます。 次に、前と同じ畳み込み、アクティベーション、プーリング操作のセットを使用して、Flatten レイヤーを入力し、Softmax を使用して 2 つの完全に接続されたレイヤーの後の結果を出力します。 結果として得られたCNNモデル 今構築した Core ML モデルには、2 つの畳み込み層と最大プーリングのネストされた層があり、すべてのデータを平坦化した後、隠し層に接続され、最後に Softmax アクティベーション後の結果を出力する完全接続層があります。 ベースライン TensorFlow 2.0 モデル 結果、特に実行時間の観点からのトレーニング パフォーマンスをベンチマークするために、著者らは TensorFlow 2.0 を使用して同じ CNN モデルの正確なコピーを再作成しました。 以下の Python コードは、TF 内の各レイヤーの同じモデル アーキテクチャと出力形状を示しています。 レイヤー、レイヤーの形状、畳み込みフィルター、プーリング サイズが、SwiftCoreMLTools ライブラリを使用してデバイス上で作成された Core ML モデルとまったく同じであることがわかります。 比較結果 トレーニング実行時間のパフォーマンスを見る前に、まず、Core ML モデルと TensorFlow モデルの両方が、同じ 10,000 個のテスト サンプル画像に対して、同じエポック数 (10)、同じハイパーパラメータ、非常に類似した精度メトリックでトレーニングされていることを確認します。 以下の Python コードからわかるように、TensorFlow モデルは Adam オプティマイザーとカテゴリクロスエントロピー損失関数を使用してトレーニングされており、テストケースの最終的な精度結果は 0.98 を超えています。 Core MLモデルの結果が下図の通りです。TensorFlowと同じオプティマイザー、損失関数、トレーニングセット、テストセットを使用しています。認識精度も0.98を超えていることがわかります。 |
<<: 12 のシナリオ アプリケーション、100 を超えるアルゴリズム、AI はどのようにして経済を征服するのか?
>>: 今後 20 年以内に、完全自動運転のコネクテッドカーが登場するでしょうか?
[[391010]]昨今、都市化の加速と生活水準の向上に伴い、ペットを飼うことがますます多くの人々の...
2021 年に AI は創薬、在宅勤務、エッジ コンピューティングをどのように変えるのでしょうか?...
「機械は人間を攻撃できるか?」という疑問は、世界中の会議やソーシャルチャットの議論のテーブルで浮上し...
多くの企業が人工知能(AI)ファーストの戦略を目指しており、ビジネスプロセスの最適化に加えて、ビジネ...
ヘッドセットにより、Meta は新たな命を吹き込まれます! SIGGRAPH 2023 カンファレン...
マイクロソフト創業者のビル・ゲイツ氏、グーグルの人工知能の第一人者ジェフ・ディーン氏、ディープマイン...
数日前、ChatGPTの最も強力なライバルであるClaudeが第2世代にアップグレードされ、Goog...
組合せ最適化問題の背景組み合わせ最適化は、NP 困難な制約付き最適化問題を解決することを目的とした、...
11月1日、Baidu Brainは2018年Baidu世界大会の初イベントとしてデビューしました。...
2024年初頭にChatGPTが人気を博して以来、コーディングを支援するさまざまなAIGCツールに...
具体的には、この記事ではまず、分散コンピューティングの基本概念と、分散コンピューティングがディープラ...
[51CTO.com オリジナル記事] 2018 年に最も人気のある 2 つの単語はどれでしょうか...