3つの大きな弱点がAIスタートアップへの扉を閉ざしている

3つの大きな弱点がAIスタートアップへの扉を閉ざしている

先月、投資会社a16zがAIスタートアップが直面する困難を分析した記事を発表しました。AIスタートアップ分野に興味のある方は、この記事を必ず読んでください。または、私のコメントを先に読んでいただいても結構です。

この記事はビジネスモデルの観点から始まり、AI スタートアップと従来のソフトウェア企業を比較します。検討する価値のある問題が多すぎることに気づくでしょう。私はそれを「AI スタートアップのアキレス腱」と呼んでいます。

[[319099]]

クラウドサービスのコスト

AI スタートアップ企業はクラウド サービスの利用に熱心です。クラウド サービスは確かに AI スタートアップ企業が機械学習モデルを迅速に構築して展開するのに役立ち、その柔軟性により突然のトラフィックの圧力にも対処できます。

しかし、この一見甘い計画の裏には、多くの「ルーチン」がある。一方では、機械学習モデルのトレーニング全体に必要なコンピューティング、ストレージ、ネットワークのリソースは非常に高く、これもまた莫大なコストだ。FTの以前のレポートでは、スタートアップのクラウドへの支出がAWSとMicrosoftに莫大な収益をもたらしていると述べられている。

一方、クラウド サービスの隠れたコストには、クラウド サービス プロバイダーの異なる地域における機械学習モデルの移行や、異なるクラウド サービス プロバイダー間の移行も含まれます。

さらに重要なのは、AI全体の発展を悩ませてきたコンピューティングパワーの問題は、短期的にはほぼ金銭でしか解決できないということだ。ムーアの法則は無効となり、OpenAIが指摘する膨大なコンピューティングパワーの需要と、Nvidiaの単一GPUの実際のコンピューティングパワーの向上との間には大きな対照がある。

分散コンピューティングはこの問題を解決するために登場したと言う人もいるかもしれませんが、a16z のアナリストが言うように、このソリューションはコストではなく速度を解決します。スタートアップ企業が分散コンピューティングに執着するのは、経済的に自殺するに等しい。

人間の場所とコスト

「データがなければ、インテリジェンスはない」という言葉を聞いたことがあるなら、もう 1 つの文を思い出す必要があります。「人間によってラベル付けされた大量のデータがなければ、十分なインテリジェンスは存在しません。」

これには、産業チェーン全体の人的コストが関係します。ここ数年、メディアはどの企業が年収100万で機械学習の博士号取得者を採用しているかを熱心に報道しているが、どのAI企業が人間がラベル付けしたデータを取得するためにいくらのコストを費やしているかについてはほとんど耳にしない。a16zが示した数字は、同社の収益の10%~15%を占める。

もう一つの証拠は、「第一のAI銘柄」として知られるMegvii Technologyの目論見書において、同社の全従業員に占める「データラベリング」人材の割合が17%となっていることだ。

これは、データラベリングが巨大な産業となった理由も説明しています。中国の自然な労働力の優位性を活かして、データラベリング産業は急速に発展しています[4]。

データラベリングが単なる外注人件費の一種だとすれば、AIスタートアップにはさらに別の層の人件費が必要です。AI製品がさまざまな業界に浸透すると、スタートアップはカスタマイズを必要とする巨大な市場に直面することになります。つまり、維持・開発には多くの人手が必要になります。

これは従来のソフトウェア企業とは異なります。従来のソフトウェア企業では、ソフトウェアの1つの機能を十分な企業や業界に適応させることができます。しかし、AIの分野では、異なるデータソースがもたらす連鎖反応はどれほど大きいのでしょうか。A16zのアナリストは例を挙げました。2つの自動車メーカーの車両欠陥検出は同じように見えますが、データソースが異なると、モデルのトレーニングと展開全体に大きな違いが生じることがわかります。

AIサービスは避けられない選択

「AI as a Service」は、AI スタートアップのマーケティング用語というよりは、むしろ無力な選択肢です。クラウド サービスのコストをスケーリングによって削減できず、データのラベル付けや業界の拡大における人件費が依然として高い場合、AI スタートアップには選択肢がほとんど残されていません。

a16z のアナリストの最終結論は、現在の AI スタートアップの多くはソフトウェア企業というよりはサービス企業に近いと指摘した。「一部のサービス企業を置き換えることはできますが、サービスを置き換えることはできません。」

「ソフトウェアが世界を食べる」を標榜するa16zにとって、この推論はAIスタートアップに対する同社の見解を世界に示すものでもある。AIスタートアップをサービスとして捉えた場合、AIスタートアップの評価と成長の余地は限られてきた。少なくともシリコンバレーでは、ソフトウェア/テクノロジー企業の評価は売上高の10~20倍であるのに対し、サービス企業の評価は2倍に過ぎない。

これによって、もう一つの疑問も浮かび上がります。もう一つの「AI冬」が来るのでしょうか?私の観点からすると、この時期はむしろ「秋」に近いです。資本市場も国内外の巨大企業も、AI技術と製品をより合理的に捉えており、業界の将来の発展への影響も評価しています。

これらすべては、AI スタートアップのブームが終わったという 1 つの事実を浮き彫りにしています。

原題: 3つの行き止まり、AI起業への扉は閉ざされる

<<:  IoTミツバチ:私たちの未来を救う技術

>>:  自分の写真がディープフェイクに使われるのではないかと心配ですか?ボストン大学の新しい研究を試してみてください

ブログ    
ブログ    
ブログ    

推薦する

3億7500万人の労働者が転職する?人工知能が代替できない分野はどれですか?

人工知能は急速に発展しています。データによると、2016年から2020年にかけて、中国の人工知能市場...

中国の博士課程の学生が、2つのトランスフォーマーを使ってGANを構築しようとした。

[[382526]]最近、CV 研究者は変圧器に大きな関心を示し、多くのブレークスルーを達成しまし...

GPT4 はロボットにペンをスムーズに回転させる方法を教えます。

チャット中に数学者テレンス・タオ氏にインスピレーションを与えたGPT-4は、最近、ロボットにペンを回...

マインドタイピングがネイチャーの表紙に登場! 99%以上の正確さで1分間に90文字を書く

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

蜀のAI教育への道はどれほど危険か

19 世紀頃、イギリスの実証主義哲学者で社会学者の H. スペンサーは、「教育論」の中で、イギリスの...

機械学習の 3 つの時代の計算パワーの法則をまとめる: 大規模モデルの出現によって何が変わったのでしょうか?

図 1: 1950 年から 2022 年までの 118 の重要な機械学習システムの傾向。私たちは3つ...

CAPとPaxosコンセンサスアルゴリズムについての簡単な説明

CAPとはCAP理論についてはすでに多くの背景情報が語られているので、ここでは詳しくは触れません。ど...

...

AI時代のクラウドベースのインテリジェントコンピューティング

人工知能の計算能力に対する需要は弾力性と拡張性があり、ピーク需要に耐える能力と日常使用中に調整する能...

...

実用的なヒント | 人工知能に変身するために習得すべき 8 つのニューラル ネットワーク

なぜ機械学習が必要なのでしょうか?機械学習は、人間が直接プログラムできない複雑な問題を解決できるため...

コンテンツ推奨シナリオにおける自己教師学習の応用

背景機械学習コミュニティでは、教師なし学習(または自己教師あり学習)は長い間、最も価値のある分野の ...

FPSからRTSまで、ゲーム人工知能におけるディープラーニングアルゴリズムの概要記事

この論文では、ビデオゲームをプレイするためのディープラーニングアルゴリズムをレビューし、さまざまな種...