Google は、MLM 損失で直接事前トレーニングされた 24 個の小さな BERT モデルをリリースしました。

Google は、MLM 損失で直接事前トレーニングされた 24 個の小さな BERT モデルをリリースしました。

[[318598]]

Google は最近、24 個の合理化された BERT モデルをダウンロード用にリリースし、ホワイトバレンタインデーを前に NLP 研究者に素晴らしい贈り物を提供しました。

BERT はモデルが大きいため勝利しますが、モデルが大きいため敗北もします。
BERT が最初にリリースされたとき、「11 の記録を破る」という大看板を掲げ、圧倒的なパラメータ数でブレイクしました。 BERT の成功は、その大規模なモデルにあると言えます。しかし、一方では、その規模が BERT の成功につながっていますが、他方では、より広範な適用の障害にもなっており、それは 3 つの側面に反映されています。

障害1: リソースの占有

サイズが大きいため、膨大なストレージ リソースを占有する必要があり、大量のストレージ リソースを維持しながら大量のエネルギーも消費します。

障害2: 時間がかかりすぎる

BERT の作者である Jacob 氏はかつて、「BERT-Large モデルには 24 のレイヤーと 2014 の隠れユニットがあります。33 億語のデータセットで 40 エポックのトレーニングが必要であり、8 つの P100 では 1 年かかる可能性があります」と述べています。

障害3: コストが高い

かつて誰かが、3 つの主要な主流モデルのトレーニング コストはおよそ次のようになると計算しました。

  • BERT: 12,000ドル
  • GPT-2: 43,000ドル
  • XLネット: 61,000ドル

上記の問題を解決するために、BERTの簡易版が次々と登場している。

サイズは重要です。実は、上記 3 つの問題の原因はサイズにあるため、誰もが BERT の簡易版を継続的に研究し始めました。リソースが限られている場合、小型モデルには明らかな利点があります。

DistillBERT: BERT に基づく知識蒸留テクノロジーを使用して Hugging Face チームによってトレーニングされた小型 BERT。モデルサイズは40%(66M)削減され、推論速度は60%向上しましたが、パフォーマンスは約3%しか低下しませんでした。

ALBERT: モデル アーキテクチャを変更することで、サイズが大幅に削減されます。最小の ALBERT はわずか 12M、最大の ALBERT-XXLarge は 233M、BERT-Base は 110M です。しかし、サイズは縮小されたにもかかわらず、推論速度は大幅に向上しませんでした。

TinyBERT: 知識蒸留を使用してモデルを圧縮します。このモデルは華中科技大学とHuaweiが共同で制作しました。

Google が小型の BERT モデルをリリース

ちょうど昨日、Google は BERT GitHub リポジトリを更新し、英語の語彙に限定され大文字と小文字を区別しない 24 個の小規模な BERT モデルをリリースしました。

24 のモデルは WordPiece マスキングを使用してトレーニングされ、MLM 損失で直接事前トレーニングされており、標準トレーニングまたは最終タスク蒸留を介して下流のタスクに合わせて微調整できるため、MLM 蒸留のより洗練された事前トレーニング戦略よりも優れています。

理論的なガイダンスは、「読書量の多い学生はよりよく学ぶ: コンパクト モデルの事前トレーニングの重要性について」という論文から得られます。論文アドレス: https://arxiv.org/abs/1908.08962

小さな BERT モデルは、元の BERT 微調整方法に従って微調整するだけで済みますが、より大規模で正確な教師によって知識が抽出されると最も効果的です。

このリリースの BERT-Base モデルは、完全性のみを目的として、元のモデルと同じ条件で再トレーニングされていることに注意することが重要です。

GLUEスコア:


24 個の小さな BERT のダウンロード アドレス: https://storage.googleapis.com/bert_models/2020_02_20/all_bert_models.zip

<<:  ナレッジグラフは銀行のビジネスモデルをどのように変えるのでしょうか?

>>:  機械学習エンジニアとデータサイエンティストの違い

ブログ    
ブログ    
ブログ    

推薦する

アルゴリズムから離れた「ジレンマ」に直面し、専門家はシナリオベースの洗練されたガバナンスの実行を提案している。

アルゴリズムは人間の行動に基づいて「ロックイン効果」を生み出します。この法律では、ユーザーにパーソナ...

...

研究者はAIを活用して新型コロナウイルスの理解を深める

[[319373]]新型コロナウイルスが昨年12月に中国・武漢で発生して以来、過去数か月間に2,00...

...

...

...

スマート医療診断を理解するためのレポート:AIエンパワーメントと分子診断の自動化

分子診断のミッドストリーム市場は、機器メーカーや試薬メーカーによって占められています。現在の分子診断...

エッジAIとは何ですか?

エッジ AI は、今日のデジタル変革の時代に台頭している 2 つのテクノロジー、エッジ コンピューテ...

GPT-4.5がリーク、3Dビデオをサポート、価格は6倍に上昇?ウルトラマンが自ら反応

GPT 4.5 に重大なリークの疑い: 1 つは、新しいモデルには新しいマルチモーダル機能が搭載され...

IBMは機械学習に大きな飛躍をもたらす量子アルゴリズムを開発したと主張している

IBMの研究者らは、量子コンピューター上で高度な機械学習を可能にする新しい量子アルゴリズムを開発した...

AIによりドローンは未知の環境でも高速で自律飛行できる

チューリッヒ大学の研究者らは、複雑で未知の環境でもドローンが高速で自律飛行できるようにする新たな人工...

...

掃除ロボットはほこりを吸い取るだけでなく、プライバシーも「吸い取る」ことができます

家庭でますます一般的になりつつある掃除ロボットは、ほこりを吸い取るだけでなく、個人のプライバシーも「...

...

AI(人工知能)について知っておくべきこと

どのような AI テクノロジーが人気があり、人間の生活に影響を与えるでしょうか? [[398271]...