IntelがBigDLディープラーニングフレームワークをリリース、CPUを使ってGPUを攻撃する予定

IntelがBigDLディープラーニングフレームワークをリリース、CPUを使ってGPUを攻撃する予定

[51CTO.com クイック翻訳] 先週、Intel は分散型ディープラーニング用のオープンソースの Spark 駆動型フレームワークである BigDL プロジェクトをリリースしました。大手 IT メーカーが機械学習フレームワークを発表していることを考えると、CPU 大手が遅れをとる理由は確かにありません。

しかし、最も注目すべきは、Intel のプロジェクトが Spark クラスターで機械学習ソリューションを構築する上でどのように役立つかではなく、このチップ大手が GPU と最後まで戦うという野心である。

[[182276]]

大きな野望

BigDL は主に、機械学習を使用して Spark または Hadoop クラスター内のデータを処理するユーザー、特に Caffe または Torch ライブラリの使用をすでに開始しているユーザーを対象としています。 BigDL のディープラーニング アプローチは Torch と非常によく似ています。 BigDL を使用すると、両方で作成されたモデルをインポートして Spark プログラムで実行できます。さらに、Spark を使用すると、このようなワークロードをクラスター全体にスケールアウトできます。

ただし、GPU アクセラレーションを使用してプロセスの進歩を実現する他の機械学習フレームワークとは異なり、BigDL は Intel の Math Kernel を使用します。含まれている数学関数は、マルチスレッド実行と Intel 固有のプロセッサ拡張用に最適化されており、このチップ大手は Python ディストリビューションを含むいくつかのプロジェクトでこれについて言及しています。

Intel は、BigDL での処理は「シングルノード Xeon 上の既製のオープンソース Caffe、Torch、または TensorFlow よりも数桁高速である (つまり、主流の GPU ソリューションと比較して)」と主張しています。ただし、BigDL ライブラリ自体には、この主張を裏付ける特定のベンチマーク結果はありません。

GPU アクセラレーションが機械学習ライブラリの標準的な高速化オプションになりつつあるのに、なぜ Intel はデフォルトで GPU サポートを組み込まないのでしょうか。一見すると、これは Spark が従来 GPU アクセラレーション対応製品ではないためと思われます。しかし、この考え方は実際には意味をなさない。なぜなら、IBM はすでに対応するプロジェクトを立ち上げており、商用 Spark ベンダーの Databricks は昨年末に自社のサービスに GPU アクセラレーション Spark のサポートを追加しているからだ。理論上、BigDL は GPU アクセラレーション Spark と完全に連携できますが、Intel の全体的な計画は明らかに異なります。

ハードウェア戦争

Intel は、Xeon Phi プロセッサ ラインでハイエンド コンピューティング市場の GPU と戦ってきました。 Intel は、Xeon Phi プロセッサを PCIe アドイン カードの形で GPU としてパッケージ化し、OppoenMP や OpenCL などのソフトウェア ツールを組み込んで、ハードウェアでの同時処理と高速処理を可能にしています。 (Intel は Nervana という機械学習ハードウェアメーカーも買収しており、同社はおそらく自社製品を PCIe アドイン カードとして提供すると思われます。)

これはすべて、開発者により多くの選択肢があることを意味します。理論的には、既存のソフトウェアを Xeon Phi で実行することは、GPU アーキテクチャに移植するよりもはるかに少ないコード変更で実現できます。これは、Xeon Phi アドイン カードを使用して構築されたシステムは、ラック全体を交換することなく、カードを差し込むだけでアップグレードまたは拡張できるため、操作が簡単になることも意味します。

この点で、BigDL は Intel の将来の開発計画をサポートする重要な概念実証アプリケーションの 1 つと見ることができます。しかし、業界全体の勢いは明らかに GPU に傾いています。ただし、GPU アクセラレーションに使用されるほとんどのソフトウェアは、別のハードウェア ベンダー (CUDA を使用する NVIDIA) によって設定された客観的な標準に従う必要があります。さらに、Spark やその他のライブラリが GPU アクセラレーション メカニズムを本格的に導入し始めていることを考えると、開発者はこれによってもたらされるメリットを享受するためにそれほど多くの労力を費やす必要はありません。

Intel は BigDL などのライブラリを使用することで一定の競争上の優位性を獲得することができましたが、長期的には、機械学習の歴史的な車輪は依然として GPU サポートに向かって回転し続けています。

原題: Intel の BigDL ディープラーニング フレームワークが GPU を CPU に押し付ける、原著者: Serdar Yegulalp

[51CTOによる翻訳。パートナーサイトに転載する場合は、元の翻訳者と出典を51CTO.comとして明記してください]

<<:  [乾物] Tencent Cloud FPGA 上のディープラーニング アルゴリズム

>>:  大規模な機械学習: データサイエンスを本番システムアーキテクチャに導入するための典型的なパターン

ブログ    
ブログ    
ブログ    

推薦する

「水中ドローン」が登場?柔らかいロボット魚が世界最深の海溝を探索

「陸地が3つ、海が7つ」。広大な海には数え切れないほどの謎が隠されている。深海探査は工学技術分野で常...

星が輝くとき - WOT グローバル テクノロジー イノベーション カンファレンス 2021 が間もなく開催されます

【51CTO.comオリジナル記事】​​​ 100年前、シュテファン・ツヴァイクは彼の有名な著作「星...

Pika 1.0 はアニメーション業界に完全な革命をもたらします!ドリームワークスの創設者は、3年後にはアニメーションのコストが10分の1に下がると予測

最近、ドリームワークスの創設者ジェフリー・カッツェンバーグ氏は、生成AIの技術がメディアとエンターテ...

...

中国では普及していない無人コンビニが、なぜアメリカでは人気があるのか​​?

[[247391]] 2018年1月、米国シアトルのアマゾン本社にアマゾン初の無人コンビニエンスス...

2021年に注目すべき人工知能と機械学習の5つのトレンド

人工知能と機械学習は市場で注目されている技術であり、その重要性は 2020 年にピークに達しました。...

...

ディープラーニング:先入観、限界、そして未来

[[196544]]最近、カリフォルニア大学サンタクルーズ校 (UCSC) の Stewart 研究...

百度言語知識技術サミットが開催され、王海鋒氏がNLP技術の進化の道筋を明らかにした

AIはより深いレベルへと進化しており、言語や知識技術の重要性がますます高まっています。 8月25日、...

AIがデータセンターを管理するのに時間がかかる理由

ハイパースケーラーはすでに業務改善のために AI を活用していますが、他のほとんどのデータセンターで...

大規模モデルの微調整には人間のデータに頼らなければならないのでしょうか? DeepMind: フィードバック付きの自己トレーニングの方が優れている

皆さんもご存知のとおり、大規模言語モデル (LLM) はディープラーニングの状況を変えつつあり、人間...

暗唱することは理解を意味するわけではない。ビッグモデルの背後にある知識の蓄積と抽出の詳細な分析

モデルのサイズが大きくなるにつれて、大規模なモデルが大量の知識を習得できる方法を模索し始めます。一つ...

人工知能が物流業界に革命を起こす5つの方法

人工知能は物流業界の変革において重要な役割を果たしていることが証明されています。グローバル化が加速す...